Нижегородский государственный университет имени Н.И. Лобачевского Радиофизический факультет

> Отчет по лабораторной работе №2 Эффект Зеемана

> > Выполнили студенты 430 группы

Нижний Новгород, 2018

Содержание

Teo	ретическая часть	2				
1.1	Введение	2				
1.2	Феноменологический расчет зеемановского расщепления	3				
1.3	Квантовая векторная модель атома в приближении $[L-S]$ -связи					
1.4	Интенсивность зеемановских линий	9				
1.5	Классическая модель Зеемана					
Пра	ктическая часть	13				
2.1	Определение магнитного поля по току					
2.2	Наблюдение нормального эффекта Зеемана 18					
2.3	Изучение аномального эффекта Зеемана					
	2.3.1 «Квазинормальный» случай	20				
	2.3.2 Случай наличия более трех разрешаемых компонент	21				
	2.3.3 Случай частичого разрешения компонент	21				
	Teop 1.1 1.2 1.3 1.4 1.5 Пра 2.1 2.2 2.3	Теоретическая часть 1.1 Введение				

1. Теоретическая часть

1.1. Введение

Согласно квантовой теории излучения энергия атома *E* может принимать лишь дискретные строго определенные значения. Совокупность таких разрешенных значений (уровней энергии) называют энергетическим спектром атома. Энергетический спектр атома может быть задан с помощью вполне определенного набора внутренних характеристик атома - его квантовых чисел. Наиболее точный смысл каждого квантового числа выясняется при решении уравнения Шредингера, в котором квантовые числа определяют спектр собственных значений. Мы же введем лишь названия и обозначения, а там, где это возможно, дадим краткую, более или менее наглядную и нс слишком строгую, характеристику квантовых чисел атома:

n – **главное квантовое число**, определяющее среднее расстояние электронного облака от ядра;

L – **орбитальное квантовое число**, характеризующее сумму моментов импульса электронов **P**_L, связанных с их вращением вокруг ядра;

S – спиновое квантовое число, описывающее сумму собственных моментов импульса электронов **P**_S, не связанных с их вращением вокруг ядра¹;

J – азимутальное квантовое число, которому ставится в соответствие полный механический момент электронов в атоме:

$$\mathbf{P}_{\mathbf{J}} = \mathbf{P}_{\mathbf{L}} + \mathbf{P}_{\mathbf{S}} \tag{1}$$

 M_J – магнитное квантовое число, название которого связано с тем, что энергия атома зависит от M_J лишь при наличии внешнего магнитного поля: $E(n, J, L, S, M_J)$. В отсутствии магнитного поля для всех допустимых значений M_J энергия атома имеет одно и то же значение $E(n, J, L, S, M_J)$ – в этом случае говорят, что имеет место вырождение (неоднозначность) состояния атома по квантовому числу M_J . Из элементарной физики известно, что в магнитном поле могут изменить свою энергию лишь системы, имеющие (или приобретающие) магнитный момент μ , причем изменение энергии равно:

$$\delta E = -(\mu \mathbf{H}) = -\mu_H H. \tag{2}$$

¹Наличие собственною механического момента (спина) и магнитного момента у покоящегося электрона не имеет удовлетворительного наглядного толкования и должно восприниматься как факт, однозначно следующий из результатов многочисленных экспериментов.

Рис. 1: Энергетическая структура атома и некоторые из возможных излучательных переходов а) в невозмущенном состоянии, б) при наложении внешнего магнитного поля

Из сказанного ясно, что квантовое число M_J характеризует проекцию магнитного момента атома μ на направление внешнего магнитного поля **H**.

При переходе атома с более высокого энергетического уровня E_2 на более низкий E_1 , излучается квант электромагнитной энергии (1) с частотой

$$\omega_{1,2} = \frac{E_2 - E_1}{\hbar} \tag{3}$$

где $\hbar = 1.054 \cdot 10^{-27}$ эрг·с – постоянная Планка. Поскольку при наложении внешнего магнитного поля вырождение энергетических состояний E_2 и E_1 по квантовому числу M_J снимается (т.е. происходит расщепление каждого энергетического уровня на несколько подуровней), в спектре излучения мы вместо одной наблюдаем несколько частот (линий) излучения (1). Этот эффект расщепления спектральных линий атомов в магнитном поле и называется эффектом Зеемана.

1.2. Феноменологический расчет зеемановского расщепления

С математической точки зрения квантовые числа L,S,J определяют собственные значения уравнения Шредингера P_L, P_S, P_J для волновой функции электронов Ψ в центрально - симметричном поле ядра, а дискретность собственых значений связана с тем, что волновая функция должна однозначно описывать состояние электронного облака в данной точке, то есть быть периодической функцией угла:

$$\Psi(\Theta + 2\pi) = \Psi(\Theta) \tag{4}$$

Условие (4) приводит к следующемму **правилу квантования** проекции момента импульса на фиксированное направление (например, на направление **H**):

$$P_{J_H} = \hbar M_J \tag{5}$$

где квантовое число M_J принимает 2J+1 значений: J, J-1, ..0, ... - J. При этом модуль момента импульса равен:

$$P_J = \hbar \sqrt{J(J+1)} \tag{6}$$

Квантовое число J в силу различной возможной ориентации векторов \mathbf{P}_{S} (см. формулу (1)) принимает следующие значения:

$$J = L + S, L + S - 1, ..., |L - S|.$$

Для расчета зеемановского расщепления по формулам (2),(3) необходимо связать вычисленный по формуле (6) полный механический момент атома со средней проекцией μ_H его магнитного момента на направление **H**. Вид этой связи зависит от квантового состояния атома, а ее вычисление представляет собой отдельную задачу, решение которой будет дано в п.3 в достаточно простом приближении. Пока же для получения общей формулы зеемановского расщепления представим связь μ_H и P_J феноменологически в виде:

$$\mu_H = \mu_0 g \frac{P_{J_H}}{\hbar} = \mu_0 g M_J,\tag{7}$$

где **g** - так называемый фактор (или множитель) Ланде соответствующего квантового состояния, а величина μ_0 называется магнетоном Бора и имеет смысл наименьшей отличной от нуля проекции магнитного момента, связанного с орбитальным движением электрона в атоме: $\mu_0 = \frac{e\hbar}{2mc} = 9.27 \cdot 10^{-21}$ эрг/Гс. Здесь и далее: е - элементарный заряд, m - масса электрона, с - скорость света.

Будем считать, что внешнее магнитное поле достаточно слабо, так что $\mu_0 H$ много меньше разности энергий между любой парой рассматриваемых уровней атома. Тогда зеемановское расщепление интересующего нас уровня E можно рассматривать изолированно и в соответствии с (2), (5) и (7) написать:

$$\delta \mathbf{E}_{\mathbf{M}} = -\mathbf{g}\mu_{\mathbf{0}}\mathbf{H}\mathbf{M}_{\mathbf{J}}.$$
(8)

Таким образом, при переходе между каждой парой подуровней, образовавшихся в результате расщепления в магнитном поле энергетических состояний, описываемых квантовыми числами (n_2, J_2, L_2, S_2) и (n_1, J_1, L_1, S_1) будут излучать частоты:

$$\omega_{1,2} = \frac{E_2(n_2, J_2, L_2, S_2, M_{J_2}) - E_1(n_1, J_1, L_1, S_1, M_{J_1})}{\hbar}$$
(9)

Однако не все из указанных переходов могут быть осуществлены. Действительно, так как квант электромагнитного излучения (фотон) имеет отличный от нуля собственный момент импульса (спин) $P_{\mu_H} = 0, \pm \hbar$, то из закона сохранения момента импульса и формулы (5) следует, что в процессе излучения магнитное квантовое числоа M_J атома может либо измениться на удиницу ($\Delta M = \pm 1$), либо остаться еизменным ($\Delta M = 0$). Можно показать, что аналогичные ограничения накладываются на изменение квантового числа $J : \Delta J = 0, \pm 1$.

Указанные усдлвия носят название правил отбора и определяют допустимые переходы медлу щеемановскими уровнями. Соответствующие им зеемановские линии в спектре излучения носят название π - (при $\Delta M = 1$) и σ - (при $\Delta M = \pm 1$) компонент и отличаются, в частности, поляризацией. Вдоль магнитного поля излучаются лишь циркулярно поляиризованные σ - компоненты, поляризованные линейно в перпендикулярных друг другу плоскостях. В зависимости от направления наблюдения говорят соответственно о **продольном** и **поперечном** эффекте Зеемана.

Приведенные выше формулы позволяют легко рассчитать вид зеемановского спектра. Пусть в отсутствие внешнего магнитного поля при переходе между уровнями $E_1(J_1, L_1, S_1)$ и $E_2(J_2, L_2, S_2)$, которые далее будем называть комбинирующими, излучается линия с частотой ω_0 . При наложении поля расщепления каждого из комбинирующих уровней будет определяться формулой (8), и в соответствии с правилами отбора в системе станут возможны переходы между уровнями с квантовыми числами:

$$(J_1, L_1, S_1, M) \to (J_2, L_2, S_2, M)$$

 $(J_1, L_1, S_1, M \pm 1) \to (J_2, L_2, S_2, M)$

с излучением частот ω_{M_1,M_2}

$$\omega_{M,M} = \omega_0 + \frac{\delta E_{1,M} - \delta E_{2,M}}{\hbar} = \omega_0 + (g_1 - g_2)M\frac{\mu_0 H}{\hbar}$$
(10a)

$$\omega_{M_{\pm 1},M} = \omega_0 + \frac{\delta E_{1,M\pm 1} - \delta E_{2,M}}{\hbar} = \omega_0 \pm g_1 \frac{\mu_0 H}{\hbar} + (g_1 - g_2) M \frac{\mu_0 H}{\hbar}$$
(10b)

смещенных относительно основной частоты ω_0 на величину:

$$\Delta \omega_{M_1,M_2} = \omega_{M_1,M_2} - \omega_0 = (g_1 M_1 - g_2 M_2) \frac{\mu_0 H}{\hbar}$$
(11)

Как видно из (10а), для различных по знаку М квантовых состояний π - компоненты излучения расположены симметрично относительно несмещенной линии ω_0 , а σ - компоненты каждой из двух поляризаций - симметрично относительно смещенных положений $\omega_0 \pm g_1 \frac{\mu_0 H}{\hbar}$. Расстояние между составляющими зеемановского спектра внутри каждой из трех групп пропорционально разности **g** - факторов комбинирующих уровней. К вычислению **g** - факторов квантовых состояний для достаточно простой модели атома мы и переходим ниже.

1.3. Квантовая векторная модель атома в приближени
и $[L-S]\mbox{-}$ связи

Почему мы вообще говорим о вычислении **g**-фактора заданного квантового состояния? Разве отношение механического и магнитного моментов не есть величина, постоянная для данного атома? Оказывается нет, и связано это с тем удивительным обстоятельством, что отношение магнитного μ и механического **P** моментов электрона различно для орбитального и спинового моментов:

$$\mu_{\mathbf{L}_{\mathbf{i}}} = -\gamma \mathbf{P}_{\mathbf{L}_{\mathbf{i}}},\tag{12}$$

$$\mu_{\mathbf{S}} = -2\gamma \mathbf{P}_{\mathbf{S}_{\mathbf{i}}},\tag{13}$$

 $\gamma = \frac{e}{2mc}$ - гиромагнитное отношение.

Поскольку в различных квантовых состояниях орбитальные и спиновые моменты электронов дают различный вклад в величину механического момента атома P_J , соотношение между μ_H и P_{J_H} в формуле (7), то есть **g**-фактор, оказывается также зависящим от квантового состояния. Для нахождения величины **g** следует, таким образом, найти среднюю по времени проекцию суммарного магнитного момента атома на направление внешнего магнитного поля **H** в данном квантовом состоянии.

Квантовомеханический расчет магнитных свойств многоэлектронных атомов представляет собой весьма сложную задачу, даже если пренебречь механическим и магнитным моментом ядра. В общем случае *кулоновское самосогласованное поле* в атоме является *центрально-симметричным* с точностью до так называемого *остаточного взаимодействия*, величина которого, как правило, существенно больше релятивистского взаимодействия спинового **P**_S, и **P**_L, моментов для каждого из электронов оболочки.

В некоторых тяжелых атомах и атомах, содержащих почти заполненные электронные оболочки, возможны случаи, когда *спин-орбитальное* взаимодействие превышает остаточное. В этих условиях пара моментов P_{L_i} и P_{S_i} электрона оболочки взаимодействует между собой сильнее, чем с моментами P_{L_i} и P_{S_i} других электронов. Поэтому образуются результирующие моменты P_{j_i} для каждого электрона в отдельности, которые затем уже объединяются в P_J атома. Такой вид связи носит название *jj-ceязu*.

Пренебрежение же спин-орбитальным взаимодействием по сравнению с остаточным носит название приближения *[L-S]*- (или *нормальной*, или *Рассела-Саундерса*) связи.

Приближение [L-S]--связи позволяет находить результирующие орбитальный

$$\mu_{\mathbf{L}} = \sum_{i=1}^{N} \mu_{\mathbf{L}_{i}} = -\gamma \sum_{i=1}^{N} \mathbf{P}_{\mathbf{L}_{i}} = -\gamma \mathbf{P}_{\mathbf{L}}$$
(14)

и спиновый

$$\mu_{\mathbf{S}} = \sum_{i=1}^{N} \mu_{\mathbf{S}_{i}} = -2\gamma \sum_{i=1}^{N} \mathbf{P}_{\mathbf{S}_{i}} = -2\gamma \mathbf{P}_{\mathbf{S}}$$
(15)

магнитные моменты всей электронной оболочки (**N**- число электронов в оболочке) атома с помощью *векторной* модели. При этом полный магнитный момент атома

$$\mu_{\mathbf{J}} = \mu_{\mathbf{L}} + \mu_{\mathbf{S}} = -\gamma (\mathbf{P}_{\mathbf{L}} + 2\mathbf{P}_{\mathbf{S}}) \tag{16}$$

оказывается неколлинеарным его механическому моменту, что проиллюстрировано на рис. 2.

$$\mathbf{P}_{\mathbf{J}} = \mathbf{P}_{\mathbf{L}} + \mathbf{P}_{\mathbf{S}},\tag{17}$$

Рис. 2: Векторная модель атома

Согласно правилам построения векторной модели складываемые результирующие моменты $\mathbf{P}_{\mathbf{L}}$ и $\mathbf{P}_{\mathbf{S}}$ (а вместе с ними и магнитные моменты $\mu_{\mathbf{J}}, \mu_{\mathbf{L}}, \mu_{\mathbf{S}}$ на векторной диаграмме рис. 2) прецессируют вокруг направления результирующего момента $\mathbf{P}_{\mathbf{J}}$. Скорость прецессии пропорциональна величине спин-орбитального взаимодействия.

Качественный вид зеемановского спектра оказывается различным в зависимости от соотношения между величинами взаимодействия результирующих моментов друг с другом и магнитным полем.

Рассмотрим два случая:

1)**сильное поле** - действие поля на каждый из моментов $\mathbf{P}_{\mathbf{L}}$ и $\mathbf{P}_{\mathbf{S}}$ превосходит взаимодействие их между собой

2)слабое поле - взаимодействие моментов друг с другом больше взаимодействия на каждый из них магнитного поля.

1) Внешнее магнитное поле **H** разрывает связь между результирующими моментами $\mathbf{P_L}$ и $\mathbf{P_S}$, и каждый из них прецессирует вокруг направления поля независимо другого. Проектироваться на направление поля **H** векторы $\mathbf{P_L}$ и $\mathbf{P_S}$ (а значит и векторы $\mu_{\mathbf{L}}$ и $\mu_{\mathbf{S}}$) будут тоже каждый в отдельности: $\mu_{\mathbf{H}} = -\gamma \hbar (M_L + 2M_S)$, то есть расщепление оказывается целым кратным $\mu_0 H$. Для переходов имеют место правила отбора: $\Delta M_L = 0, \pm 1; \Delta M_S = 0$. В результате получается триплет, совпадающий по виду с *нормальным зеемановским триплетом*, а само явление называется *эффектом Пашена-Бака*. Этот эффект наблюдается при $H \ge 2 \cdot 10^5$ э, когда магнитное расщепление линий становится больше *мультиплетного* (связанного со спин-орбитальным взаимодействием) расщепления.

2) В случае слабого магнитного поля (именно этот случай реализуется в условиях нашего эксперимента) магнитный момент атома μ_{J} прецессирует вокруг направления **H** (вместе с вектором \mathbf{P}_{J}), как это известно из классической механики, но и вокруг самого вектора \mathbf{P}_{J} . Поскольку частота классической (ларморовской) прецессии пропорциональна величине H, в достаточно слабых полях ларморовскую прецессию можно считать медленной по сравнению с прецессией вокруг \mathbf{P}_{J} . Усредняя μ_{J} по периоду "быстрой" прецессии, находим, что средний по времени магнитный момент атома μ совпадает с проекцией μ_{J} на направление \mathbf{P}_{J} , то есть равен:

$$\mu = \mu_L \cos\left(\widehat{\mu_{\mathbf{L}}, \mathbf{P}_{\mathbf{J}}}\right) + \mu_S \cos\left(\widehat{\mu_{\mathbf{S}}, \mathbf{P}_{\mathbf{J}}}\right)$$
(18)

Из элементарной геометрии Согласно рис.2 следует:

$$\cos\left(\widehat{\mathbf{P}_{\mathbf{L}},\mathbf{P}_{\mathbf{J}}}\right) = \frac{P_J^2 + P_L^2 - P_S^2}{2P_L P_J},\tag{19}$$

$$\cos\left(\widehat{\mathbf{P}_{\mathbf{S}},\mathbf{P}_{\mathbf{J}}}\right) = \frac{P_J^2 + P_S^2 - P_L^2}{2P_S P_J},$$

что позволяет переписать равенство (18) в виде:

$$\mu = \gamma P_J \left(1 + \frac{P_J^2 + P_S^2 - P_L^2}{2P_J^2} = \mu_0 g \frac{P_J}{\hbar}.$$
(20)

Подстановка формул вида (6) в (20) позволяет сразу найти связь между механическим P_J м "эффективным"магнитным моментом атома μ в состоянии с квантовыми числами **J**, **L**, **S**, то есть **g**-фактор данного квантового состояния:

$$g = 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}$$
(21)

1.4. Интенсивность зеемановских линий

Реально наблюдаемое в эксперименте число зеемановских линий существенным образом зависит от их относительных интенсивностей. Интенсивности зеемановских компонент могут быть рассчитаны из соображений симметрии. Результаты расчетов приведены в 1.

В качестве примера приведем результаты расчета зеемановского спектра, соответствующего переходу $J \to J + 1$ между комбинирующими уровнями $E_1(J_1 = 1, L_1 = 2, S_1 = 1)$ и $E_2(J_2 = 2, L_2 = 2, S_2 = 1)$, тогда согласно формуле 21 $g_1 = \frac{1}{2}, g_2 = \frac{3}{2}$. Переходы, на которых возможно получение зеемановских компонент, показаны стрелками на рис.3, а в таблице 2 приведены поляризация и интенсивности соответствующих линий.

Как видно из 10 и таблиц 1, 2, зеемановский спектр зеркально симметричен относительно несмещенной линии, поэтому достаточно рассчитать половину спектра.

Таблица 1: Относительные интенсивности зеемановских компонент

Переход	$J \rightarrow J - 1$	$J \rightarrow J$	$J \rightarrow J + 1$
---------	-----------------------	-------------------	-----------------------

$M \to M - 1$	$\frac{(J+M-1)(J+M)}{4}$	$\frac{(J-M+1)(J+M)}{4}$	$\frac{(J-M+2)(J-M+1)}{4}$
$M \to M$	(J+M)(J-M)	M^2	(J + M + 1)(J - M + 1)
$M \rightarrow M + 1$	$\frac{(J-M-1)(J-M)}{4}$	$\frac{(J+M+1)(J-M)}{4}$	$\frac{(J+M+2)(J+M+1)}{4}$

Поперечный эффект

$M \rightarrow M - 1$	$\frac{(J+M-1)(J+M)}{2}$	$\frac{(J-M+1)(J+M)}{2}$	$\frac{(J-M+2)(J-M+1)}{2}$
$M \rightarrow M + 1$	$\frac{(J-M-1)(J-M)}{2}$	$\frac{(J+M+1)(J-M)}{2}$	$\frac{(J+M+2)(J+M+1)}{2}$

Продольный эффект

Рис. 3: Пример излучательных переходов, разрешенных правилами отбора

Таблица 2: Поляризация и интенсивности линий Зеемановского спектра соответствующего переходу $J \rightarrow J+1$ между комбинирующими уровнями $E_1(J_1 = 1, L_1 = 2, S_1 = 1)$ и $E_2(J_2 = 2, L_2 = 1, S_2 = 1)$

$\Delta\omega_{M_1,M_2} * \hbar/(\mu_0 H)$	0	$\pm 1/2$	± 1	$\pm 3/2$	$\pm 5/2$
Поляризация	π	σ	π	σ	σ
Интенсивность (относительные едини- цы, поперечный эффект)	4	1/2	3	3/2	3

1.5. Классическая модель Зеемана

Некоторые закономерности эффекта Зеемана могут быть проиллюстрированы на классической модели, которая основывается на том, что движущийся вокруг ядра атома электрон обладает механическим и магнитным моментам связанными соотношением $\mu_{l_i} = -\gamma \mathbf{P}_{l_i}$. Таким образом, классическая модель, в отличие от квантовой, не учитывает собственный механический момент (спин) и магнитный момент электрона и, следовательно, может дать верные результаты лишь в частном случае, когда спины электронов в атоме скомпенсированы (s = 0). По чисто историческим причинам этот случай получил название **нормального** (или **простого**) эффекта Зеемана, тогда как при $s \neq 0$ эффект Зеемана называют аномальным (или сложным).

Как легко показать из законов классической физики, орбитальный электронный ток (т.е. магнитный волчок) во внешнем магнитном поле прецессирует вокруг направления **H** с ларморовской частотой:

$$\Omega = \gamma H = \frac{eH}{2mc}.$$
(22)

Чтобы объяснить спектральный состав, а также поляризацию нормальных зеемановских компонент, надо разложить сложное движение электрона на более простые составляющие.

Введем лабораторную систему отсчета (x, y, z)как показано на 4магнитное поле **H** направлено по оси z, а плоскость (x, y)- перпендикулярна ему.

Пусть сначала магнитное поле отсутствует, то есть $\Omega = 0$ - прецессионного движения нет. Орбитальное движение разложим на движение в плоско-

Рис. 4: Прецессия электрона в магнитном поле классической модели атома

сти (x, y) и вдоль оси z. Проекция кругового орбитального движения на плоскость (x, y) является движением по эллипсу, которое, в свою очередь, можно представить в виде суммы двух круговых вращений, как это показано на 5.

Здесь вектора \mathbf{R}_1 и \mathbf{R}_2 вращаются в противоположных направлениях с угловой скоростью орбитального движения ω_0 симметрично относительно большой оси эллипса, при этом конец вектора \mathbf{R} двигается по эллипсу, большая полуось которого равна $|\mathbf{R}_1 + \mathbf{R}_2|$, а малая $|\mathbf{R}_1 - \mathbf{R}_2|$.

В свою очередь, разложив круговое орбитальное движение электрона на сумму двух линейных ортогональных гармонических колебаний, легко увидеть, что проекция этого движения на ось z есть гармоническое колебание с частотой ω_0 .

При включении магнитного поля, как уже отмечалось выше, результирующее движение электрона будет суммой быстрого орбитального вращения и прецессии орбиты, то есть на орбитальное движение наложится вращение с угловой скоростью Ω вокруг оси z. Ко-

Рис. 5: Диаграмма, иллюстрирующая представление движения по эллипсу в виде суммы двух круговых

лебания вдоль оси z при этом не изменятся, скорость вращения вектора \mathbf{R}_1 уменьшится, а вектора \mathbf{R}_2 увеличится на величину Ω .

Используя элементарную дипольную модель излучающего атома, легко увидеть что в спектре излучения вдоль направления внешнего магнитного поля будут присутствовать лишь две циркулярно поляризованные волны с частотами $\omega_{1,2} = \omega \pm \Omega$ (нормальный зеемановский дублет), тогда как в перпендикулярном направлении будут наблюдаться три линейно поляризованные компоненты на частотах $\omega_1, \omega_0, \omega_2$ (нормальный зеемановский триплет).

Поскольку расщепление линии обычно весьма мало, т.е. $|\omega_1 - \omega_2| \ll \omega_0$, из статистических соображений следует, что средняя кинетическая энергия каждой из трех составляющих движения (степеней свободы) электрона примерно одинакова. Это означает, что, если в отсутствие магнитного поля интенсивность линии излучения обозначить I_0 , то интенсивности зеемановских компонент составят $I_0/2$ и $I_0/2$ в дублете и $I_0/4, I_0/2, I_0/4$ в триплете.

Таким образом, классическая теория предсказывает сам факт расщепления спектральных линий в магнитном поле, хорошо объясняет поляризацию излучения и качественно указывает на различную относительную интенсивность зеемановских компонент. Число наблюдаемых зеемановских линий, их частоты и относительные интенсивности должны рассчитываться по приведенным выше квантомеханическим формулам.

2. Практическая часть

Целью данной работы является изучение эффекта Зеемана на примере спектра излучения *Ne* с помощью **интерферометра Фабри-Перо (ИФП)**.

Схема экспериментальной установки приведена на 6. Здесь S - газосветная трубка, помещенная между полюсами поворачивающегося электромагнита, **И-ИФП**, L_1 и L_2 ахроматические линзы, **ИСП-51** - призменный спектрограф, **Т** - короткофокусная зрительная трубка, **М** - окулярный микрометр.

ИФП является многолучевым интерферометром высокой разрешающей способности. Он состоит из двух прозрачных клиновидных пластин (см. рис. 7), внутренние поверхности которых ограничивают плоскопараллельный слой воздуха. На эти поверхности нанесено диэлектрическое покрытие, обеспечивающие энергетический коэффициент отражения ρ , близкий к единице.

Луч *OO*₁, вошедший в интерферометр и многократно отразившийся от зеркальных поверхностей 1 и 2, образует ряд проходящих параллельно лучей с постоянной разностью хода

$$\Delta = 2h\cos\Psi,\tag{23}$$

где h толщина воздушного слоя, $\Psi \ll 1-$ угол падения света в зазоре.

Рис. 7: Интерферометр Фабри-Перо

Объектив, установленный за **ИФП**, формирует **линии равного наклона**, представляющие собой

систему концентрических колец. Угловые радиусы Ψ_1 колец Фабри-Перо для длины волны

 λ удовлетворяют условию интерференционных максимумов

$$2h\cos\Psi_i = m_i\lambda = m_0\lambda\cos\Psi_i,\tag{24}$$

где m_i - порядок интерференции (большое целое число, так как $h \gg \lambda$); $m_0 = 2h/\lambda$ - максимальный порядок интерференции, получающийся при $\Psi = 0$, то есть в центре картины; $i = 1, 2, 3, \ldots$ - номер кольца по порядку от центра картины.

Легко показать, что диаметры колец Фабри-Перо описываются формулой:

$$d_i^2 = \frac{4f^2\lambda(i-1+\varepsilon_\lambda)}{h} \tag{25}$$

где f - фокусное расстояние объектива $\varepsilon_{\lambda} \in [0; 1]$ - так называемая дробная доля порядка интерференции в центре колец, определяемая равенством

$$m_0 - m_i = i - 1 + \varepsilon_\lambda. \tag{26}$$

Характерными особенностями **И**ФП как спектрального прибора являются высокая разрешающая способность

$$R = \frac{m_i \pi \sqrt{\rho}}{1 - \rho} \tag{27}$$

и малая дисперсионная область

$$\Delta\lambda_{\rm CBOG} = \frac{\lambda^2}{2h\cos\Psi}.$$
(28)

Как правило, это делает необходимым использование дополнительного **монохроматора**. В нашем случае им служит **призменный спектрограф ИСП-51**.

Рис. 8: Вид спектральных линий в выходной плоскости спектрографа

ИФП устанавливается таким образом, чтобы плоскость локализации колец Фабри-Перо совместилась с плоскостью входной щели спектрографа. Щель вырезает из колец узкую вертикальную полоску. Таким образом, спектрограф разлагает свет в горизонтальной плоскости, а ИПФ - вдоль вертикальной входной щели спектрографа. В результате наблюдения картина, состоящая из ряда светлых вертикальных полосок, прорезанных яркими дугами колец Фабри-Перо. Положение колец определяет тонкую структуру соответствующей спектральной линии.

Параллельные пучки лучей, вышедших из интерферометра Фабри-Перо (7) в фокальной плоскости объектива образуют систему концентрических колец – линии равного наклона. Однако в окуляр зрительной трубы видны лишь небольшие участки дуг этих колец, соответствующие различным спектральным линиям неона. Для определения величины расщепления $\delta\lambda$ проводят измерения либо диаметров колец, либо лишь разностей их радиусов. В последнем случае установку надо настроить так, чтобы наблюдались лишь верхние (либо нижние) части колец. При этом можно сделать увеличение трубы больше, что облегчает измерение дуг $x_{\lambda-\Delta\lambda}, x_{\lambda}, x_{\lambda+\Delta\lambda}$ (см. рис. 9) и уменьшает ошибки измерений.

Получим формулу для расчёта величины $\delta\lambda$. Условие наблюдения интерференционных

колец выражается формулой (24). Из рис. 10 с учётом малости угла Ψ для радиуса кольца R найдем

$$R \approx f\Psi,\tag{29}$$

где *f*- фокусное расстояние объектива.

Для разностей радиусов 9 из соотношения 29 получим

$$\Delta R_m \approx f \delta \Psi_m \,\,\mathrm{i}\,\, \Delta R_\lambda \approx f \delta \Psi_\lambda \tag{30}$$

Рис. 9: Вид двух соседних колец интерферометра Фари-Перо при расщеплении спектральной линии в магнитном поле. ΔR_m - разность радиусов колец одного порядка интерференции, образованные излучением разных длин волн ($\lambda - \Delta \lambda, \lambda, \lambda + \Delta \lambda$); ΔR_{λ} - разность радиусов колец разных порядков интерференции, образованных излучением одной длины волны.

Величину разности углов $\delta \Psi_m$
и $\delta \Psi_\lambda$ найдем из 24, которое с учетом малост
и Ψ примет вид

$$1 - \frac{\Psi^m}{2} = \frac{m\lambda}{2h} \tag{31}$$

Откуда получаем значения

$$\delta\Psi_m = \frac{m\delta\lambda}{2h\Psi_m}\delta\Psi_\lambda = \frac{\lambda}{2h\Psi_\lambda} \tag{32}$$

Рис. 10: К расчету радиуса колец Фабри-Перо

Усредняя результаты измерений, получим

$$\langle \Delta R_m \rangle = f \langle \delta \Psi_m \rangle = f \frac{m \delta \lambda}{2h} \langle \frac{1}{\Psi_m} \rangle \tag{33}$$

Аналогично для

$$\langle \Delta R_{\lambda} \rangle = f \langle \delta \Psi_{\lambda} \rangle = f \frac{\lambda}{2h} \frac{1}{\Psi_{\lambda}}$$
(34)

Из соотношений 33 и 34 с учетом равенства $\langle \frac{1}{\Psi_m} \rangle = \langle \frac{1}{\Psi_\lambda} \rangle$, которое следует из того, что углы Ψ_m и Ψ_λ принимают один и тот же ряд значений, получим формулу для расчета $\delta\lambda$:

$$\delta\lambda = \frac{\lambda^2}{2h} \frac{\langle \Delta R_m \rangle}{\langle \Delta R_\lambda \rangle} \tag{35}$$

2.1. Определение магнитного поля по току

Мы аппроксимировали зависимость магнитного поля от тока гладкой функцией:

$$H = a \cdot \exp(b \cdot I) + c \cdot \exp(d \cdot I)$$
(36)

Здесь a = 6581, b = 0.04164, c = -7785, d = -1.144.

2.2. Наблюдение нормального эффекта Зеемана

Мы пронаблюдали характер поляризации компонент в поперечном эффекте, исследуя линию с длиной волны 585.25 нм. Продольный эффект не изучался, так как на данной установке он не виден.

Рис. 11: Характер поляризации компонент

Задав значение магнитного поля в 5520 эрстед, мы замерили расщепление линий:

Рис. 12: Вид двух соседних колец интерферометра Фабри-Перо при расщеплении спектральной линии в магнитном поле в выходной плоскости спектрографа

По формуле (35) рассчитаем $\delta \lambda$:

$$\delta\lambda = \frac{\lambda^2}{2h} \cdot \frac{5}{23} \tag{37}$$

Здесь h=4 мм, λ =585.25 нм:

$$\delta\lambda = \frac{585.25^2 \cdot 10^{-18}}{2 \cdot 4 \cdot 10^{-4}} \cdot \frac{5}{23} = 9.30 \cdot 10^{-11} \text{ M}$$
(38)

Тогда отсюда

$$\Omega = \frac{2\pi c}{\lambda + \delta\lambda} - \frac{2\pi c}{\lambda - \delta\lambda} = 8.41 \cdot 10^{10} \text{ pag/c}$$
(39)

И в рамках классической модели (см. 22), в СГС:

$$\frac{e}{m} = \frac{2\Omega c}{H} = 9.23 \cdot 10^{17} = \tag{40}$$

Отметим, что табличное значение заряда к массе в СГС $5.27 \cdot 10^{17}$.

Оценим разрешающую способность ИФП.

Теоретически мы можем рассчитать её,воспользовавшись формулой (27), подставляя туда максимальный порядок интерференции $m_0 = \frac{2h}{\lambda}$:

$$R = \frac{m_0 \pi \sqrt{\rho}}{1 - \rho} = 368299 \tag{41}$$

Экспериментальную разрешающую способность будем оценивать как:

$$R = \frac{\omega}{\Delta\omega} = 28274 \tag{42}$$

2.3. Изучение аномального эффекта Зеемана

2.3.1 «Квазинормальный» случай

Аномальный эффект исследовался в «квазинормальном» случае, когда в спектре представлены только три компоненты — исследуя линию с длиной волны 607.4 нм.

Магнитное поле Н=5406 эрстед.

Рис. 13: Вид двух соседних колец интерферометра Фабри-Перо при расщеплении спектральной линии в магнитном поле в выходной плоскости спектрографа

Теоретически посчитанное в рамках LS-приближения (21) значения g-факторов здесь

$$g_1 = g_2 \equiv g = 1 + \frac{1}{2} = 1.5 \tag{43}$$

Здесь h=4 мм, λ =607.4 нм:

$$\delta\lambda = \frac{607.4^2 \cdot 10^{-18}}{2 \cdot 4 \cdot 10^{-3}} \cdot \frac{0.06}{0.286} = 8.23 \cdot 10^{-12} \text{ M}$$
(44)

Тогда отсюда

$$\Omega = \frac{2\pi c}{\lambda + \delta\lambda} - \frac{2\pi c}{\lambda - \delta\lambda} = 84.15 \cdot 10^9 \text{ pag/c}$$
(45)

И по формуле (10) получим

$$g = \frac{\Omega\hbar}{\mu_0 H} = 1.77\tag{46}$$

Как видно, сходится неплохо.

2.3.2 Случай наличия более трех разрешаемых компонент

В данном эксперименте длина волны 638.3 нм, поле H =

Рис. 14: Вид двух соседних колец интерферометра Фабри-Перо при расщеплении спектральной линии в магнитном поле в выходной плоскости спектрографа

Рассчитаем разность g-факторов по формуле (10):

$$g_1 = 1 + \frac{1 \cdot (1+1) - 1 \cdot (1+1)}{2 \cdot 01 \cdot (1+1)} = 1/2; g_2 = 1 + \frac{1 \cdot (1+1) + 1 \cdot (1+1) - 2 \cdot (2+1)}{2 \cdot 1 \cdot (1+1)} = 3/2$$
(47)

Так как мы смотрим
 π – компоненты, то согласно правилам отбора (стр. 7 методички)
 $\Delta M=0,$ тогда при $M_1=M_2=-1$

$$\Delta g = g_2 - g_1 = 1 \tag{48}$$

Из эксперимента же рассчитано, по формуле (10)

$$\Delta g = 2.11\tag{49}$$

2.3.3 Случай частичого разрешения компонент

Мы проследили за изменением картины расщепления в широком диапазоне поля H и определили характер поляризации компонент в поперечном эффекте:

Рис. 15: Вид двух соседних колец интерферометра Фабри-Перо при расщеплении спектральной линии в магнитном поле в выходной плоскости спектрографа