Нижегородский государственный университет имени Н.И. Лобачевского Радиофизический факультет

> Отчет по лабораторной работе №1 Многозвенные LC-фильтры

> > Выполнили студенты 430 группы Сарафанов Ф.Г., Платонова М.В.

Нижний Новгород, 2018

Содержание

1 Теоретическая часть			2
	1.1	Цель работы	2
	1.2	Уравнения многозвенного электрического фильтра	2
	1.3	Дисперсионное уравнение	4
	1.4	Собственные колебания	6
	1.5	Вынужденные колебания	7
2	Коғ	кретные виды фильтров	10
	2.1	Фильтр низкой частоты (ФНЧ)	10
	2.2	Фильтр высокой частоты (ФВЧ)	12
	2.3	Полосовой фильтр	13
3	Пра	актическая часть	15
	3.1	Фильтр низких частот	15
	3.2	Фильтр высоких частот	17
	3.3	Полосовой фильтр	19
	3.4	Заключение	21

1. Теоретическая часть

1.1. Цель работы

Целью настоящей работы является изучение свойств линейных дискретных систем со многими степенями свободы на примере электрических фильтров. Обычно в качестве фильтров используются цепочки из последовательно соединенных друг с другом идентичных звеньев (четырехполюсников). Такие системы удобно описывать на языке теории волн, интерпретируя их, как направляющие (волноводные) системы. При этом количественное и качественное описание колебательных процессов в фильтрах существенно упрощается и делается более наглядным благодаря использованию таких волновых понятий, как дисперсия, фазовая и групповая скорости волн, коэффициенты отражения плоской волны от границ системы.

1.2. Уравнения многозвенного электрического фильтра

Система, состоящая из цепочки идентичных звеньев, будучи системой с пространственной дисперсией, обладает селективными свойствами в определенной области частот. В зависимости от того, какова область частот, в которой колебания пропускаются практически без искажений, фильтры подразделяются на фильтры низких и высоких частот, полосовые и задерживающие фильтры.

Рис. 1: Общая схема фильтра

Четырехполюсники, образующие звенья рассматриваемых в работе электрических фильтров, состоят из пассивных элементов: индуктивностей, ёмкостей и сопротивлений. Для большей методической простоты мы будем изучать только консервативные фильтры, состоящие из чисто реактивных элементов – индуктивностей и ёмкостей, так называемые LC - фильтры. Общая схема фильтра приведена на рис. 1, где введены следующие обозначения: Z(p) – операторный импеданс, G(p)– операторная проводимость, и $Z_{in}(p)$ и $Z_{out}(p)$ – операторные импедансы на входе и выходе фильтра, соответственно, где ω – частота колебаний. При расчетах фильтры могут быть разбиты на так называемые Г-образные, Т- образные и П-образные звенья. Заметим, что такое деление – чисто условное и не влияет на коэффициент передачи рассчитываемого фильтра.

Рассмотрим для примера фильтр, разбитый на Т-образные звенья (см. рис. 2), и запишем для него операторные уравнения квазистатики.

Рис. 2: Фильтр из Т-образных звеньев

При этом на основании законов Кирхгофа для комплексных амплитуд напряжений V_n и токов I_n , где n номер звена, будем иметь:

$$V_n - U_0 = \frac{Z}{2} I_n,\tag{1}$$

$$U_0 - V_{n+1} = \frac{Z}{2} I_{n+1},\tag{2}$$

$$GU_0 = I_n - I_{n+1} (3)$$

Исключая из этих уравнений U_0 и разрешая их относительно переменных V_{n+1} и I_{n+1} , получим:

$$V_{n+1} = a_{11}(p)V_n - a_{12}(p)I_n, (4)$$

$$I_{n+1} = -a_{21}V_n + a_{22}(p)I_n, (5)$$

где

$$a_{11} = 1 + \frac{1}{2}GZ, a_{12} = Z(1 + \frac{1}{4}GZ),$$
 (6)

$$a_{21} = G, a_{22} = 1 + \frac{1}{2}GZ \tag{7}$$

Отметим следующее важное свойство четырёхполюсников. Четырёхполюсники, для которых выполняются условия

$$a_{11} = a_{22}, a_{11}^2 - a_{12}a_{21} = 1, (8)$$

называются взаимными. Для них выполняется теорема взаимности, согласно которой свойства четырёхполюсника не изменяются, если его вход и выход поменять ме-стами. Нетрудно видеть, что Т-образное звено представляет собой взаимный четырёхполюсник. В случае П-образного разбиения на звенья в уравнениях (4) следует положить

$$a_{11} = 1 + \frac{1}{2}GZ, a_{12} = Z, \tag{9}$$

$$a_{21} = G(1 + \frac{1}{4}GZ), a_{22} = 1 + \frac{1}{2}GZ$$
(10)

Отсюда следует, что П-образное звено также удовлетворяет теореме взаимности. Система (4) должна быть дополнена граничными условиями

$$V_0 = -I_0 Z_0, V_N = Z_n I_n \tag{11}$$

Исследование явлений, описываемых уравнениями (4) при условии (11) включает в себя задачи:

- 1. описание собственных колебаний
- 2. описание вынужденных колебаний

Прежде чем переходить к решению первой задачи, исследуем собственные колебания (4) в безграничной цепочке, положим $N \to \infty$.

1.3. Дисперсионное уравнение

Важнейшей особенностью рассматриваемой цепочной структуры является её периодичность, являющаяся следствием идентичности звеньев и проявляющаяся при $N \to \infty$ в виде свойства так называемой *трансляционной симметрии*. Это свойство равнозначно свойству инвариантности уравнений (1) относительно преобразования трансляции $n \Rightarrow n'$ вида n' = n + m, где m- любое целое число. Трансляционная симметрия (1) в сочетании с линейностью этих уравнений позволяет искать их решение в виде

$$V_n = A e^{-in\theta}, I_n = B e^{-in\theta}, \tag{12}$$

где $n = 0, \pm 1, \pm 2, \ldots,$ а θ - некоторая величина, подлежащая определению. Она находится из условия существования нетривиального решения алгебраической системы

$$A(e^{-i\theta} - a_{11}) + Ba_{12} = 0, (13)$$

$$Aa_{21} + B(e^{-i\theta} - a_{22}) = 0, (14)$$

получаемой подстановкой (12) в (4). Этим условием является равенство нулю детерминанта (13),что, с учётом (8), даёт

$$(e^{-i\theta} - a_{11})^2 - a_{11}^2 + 1 = 0 (15)$$

или

$$\cos\theta = a_{11} \tag{16}$$

Величина θ , определяемая из (16) называется постоянной распространения и принимает в общем случае комплексные значения ($\theta = \theta' + i\theta''$). Мнимая часть θ представляет собой декремент (или инкремент) волны, а действительная часть – набег фазы волны на одно звено. При этом θ' связана с длиной волны λ очевидным соотношением

$$\lambda = 2\frac{\pi}{\theta'},\tag{17}$$

в котором

$$\lambda = \min|n_1 - n_2| \tag{18}$$

где и n_1 и n_2 - номера ячеек, отвечающих синфазным колебаниям. Поскольку параметр является функцией частоты ω , уравнение (16) связывает постоянную распространения с частотой и называется дисперсионным уравнением системы. Дисперсионное уравнение исчерпывающе характеризует безграничную систему. В случае, когда отсутствует временное и пространственное затухание (Im $\omega = \text{Im } \theta = 0$), оно позволяет определить фазовую (V_{ϕ}) и групповую (V_{rp}) скорости волн:

$$V_{\Phi} = \frac{\omega}{\theta}, V_{\rm rp} = \frac{\mathrm{d}\omega}{\mathrm{d}\theta} \tag{19}$$

 $(-\pi \le \theta \le \pi)$

Дисперсионное уравнение (16) описывает два типа волн – прямую ($\theta = \theta^+$) и обратную ($\theta = \theta^-$) волну. При этом для фиксированного ω значения θ^+ и θ^- будут отличаться только знаком:

$$\theta^- = -\theta^+. \tag{20}$$

Подставляя θ^- и θ^+ в одно из уравнений системы (13), можно найти связь между амплитудами напряжения и тока для прямой и обратной волн

$$B^{+} = G_x A^{+}, B^{-} = -G_x A^{-}, \tag{21}$$

где

$$G_x = \sqrt{\frac{a_{21}}{a_1 2}} \tag{22}$$

 $-xарактеристическая проводимость фильтра. Наряду с <math>G_x$, вводят также и обратную ей величину

$$Z_x = \sqrt{\frac{a_{12}}{a_{21}}},$$
(23)

именуемую характеристическим импедансом фильтра.

Пространственная дисперсия фильтра (описываемая (16)) обуславливает его селективные свойства. Для характеристики этих свойств вводят понятие *полосы прозрачности*, а именно полосы частот, в которой (отсутствует затухание по переменной n).

Найдём связь ширины полосы прозрачности с параметрами фильтра. С этой целью заметим, что поскольку

$$\sin\theta = \operatorname{ch}\theta''\sin\theta' + i\operatorname{sh}\theta''\cos\theta',\tag{24}$$

то в полосе прозрачности

$$\sin \theta = \sin \theta'. \tag{25}$$

Отсюда, в силу (15), заключаем, что

$$1 - a_{11}^2 \ge 0,\tag{26}$$

или, с учётом (6),-

$$GZ(1 + \frac{1}{4}GZ) \le 0 \tag{27}$$

Из этого условия и находится полоса прозрачности фильтра. Из него, в частности следует, что в полосе прозрачности фильтра характеристический импеданс (23) будет действительной величиной.

Вне полосы прозрачности $\sin \theta' = 0$ и, следовательно, $\sin \theta = i \operatorname{sh} \theta''$. С учётом (16), будем иметь

$$sh \theta'' = \pm \sqrt{a_{11}^2 - 1}$$
(28)

1.4. Собственные колебания

Найдём собственные колебания в цепочке, состоящей из N одинаковых T-образных звеньев, описываемой системой уравнений (4) при граничных условиях (11). Общее решение такой системы будет представлять собой суперпозицию прямой и обратной волн вида

$$V_n = A_1 e^{-i\theta} + A_2 e^{i\theta},\tag{29}$$

$$I_n = B_1 e^{-i\theta} + B_2 e^{i\theta}.$$
(30)

Для внутренних звеньев прямая и обратная волны распространяются независимо и для них, в силу (21), общее решение запишется в виде

$$V_n = A_1 e^{-i\theta} + A_2 e^{i\theta},\tag{31}$$

$$I_n = G_x (A_1 e^{-i\theta} + A_2 e^{i\theta}). \tag{32}$$

Подставляя это решение в граничные условия (11), получим следующую однородную систему уравнений для нахождения амплитуд A_1 и A_2 :

$$(1 + Z_0 G_x)A_1 + (1 - Z_0 G_x)A_2 = 0, (1 - Z_N G_x)e^{-iN\theta}A_1 + (1 + Z_N G_x)e^{iN\theta}A_2 = 0.$$
 (33)

Отсюда, расписав условие существования ненулевых решений для A_1 и A_2 , найдём характеристическое уравнение рассматриваемой системы

$$1 - \Gamma_0 \Gamma_N e^{-2iN\theta} = 0, \tag{34}$$

где

$$\Gamma_0 \frac{A_1}{A_2} = -\frac{1 - Z_0 G_x}{1 + Z_0 G_x} \tag{35}$$

-коэффициент отражения от левой границы фильтра, а

$$\Gamma_N \frac{A_2 e^{iN\theta}}{A_1 e^{-iN\theta}} = -\frac{1 - Z_N G_x}{1 + Z_N G_x} \tag{36}$$

-коэффициент отражения от правой границы фильтра.

Решая совместно дисперсионное уравнение (16) и характеристическое уравнение (40), найдём спектр собственных (нормальных) частот фильтра и соответствующий ему спектр значений постоянной распространения θ . Очевидно, что этот спектр будет зависеть не только от параметров звена фильтра, но и от условий на его концах. Отметим также, что число нормальных частот всегда совпадает с числом степеней свободы системы.

1.5. Вынужденные колебания

Рассмотрим вынужденные колебания в фильтре, составленном из Т-образных звеньев, при условии, что на входе фильтра действует источник синусоидальной ЭДС $E = E_0 \cos(\omega t)$ с внутренним сопротивлением r_0 (см. 37). Решение в такой системе можно искать в виде синусоидальных колебаний на частоте внешней силы ω . При этом остаются справедливыми уравнения (4), а граничные условия принимают вид:

$$V_0 = E_0 - r_0 Z_0, \ V_N = Z_N I_N.$$
(37)

Подставляя (13) в (??), получим

$$(1 + r_0 G_x)A_1 + (1 - r_0 G_x)A_2 = E_0$$

$$(1 - Z_N G_x)e^{-iN\theta}A_1 + (1 + Z_N G_x)e^{iN\theta}A_2 = 0$$
(38)

Отсюда для A_1 и A_2 будем иметь

$$A_1 = \frac{1 - \Gamma_0}{2} \cdot \frac{E_0}{1 - \Gamma_0 \Gamma_N e^{-2iN\theta}},$$

$$A_2 = \frac{1 - \Gamma_0}{2} \cdot \frac{E_0 \Gamma_N e^{-2iN\theta}}{1 - \Gamma_0 \Gamma_N e^{-2iN\theta}},$$
(39)

Рис. 3

Подставляя (39) в (13), получим следующие выражения для комплексных амплитуд напряжения V_n и I_n тока в n-ой ячейке:

$$V_n = \frac{1 - \Gamma_0}{2} \cdot \frac{E_0 e^{-in\theta}}{1 - \Gamma_0 \Gamma_N e^{-2iN\theta}} \left[1 + \Gamma_N e^{-2i(N-n)\theta} \right],$$

$$I_n = \frac{1 - \Gamma_0}{2} \cdot \frac{E_0 e^{-in\theta}}{1 - \Gamma_0 \Gamma_N e^{-2iN\theta}} G_x \left[1 - \Gamma_N e^{-2i(N-n)\theta} \right],$$
(40)

Из (40) следует, что если частота внешней ЭДС совпадает с одной из собственных частот фильтра, то амплитуды напряжений и токов во всех звеньях фильтра принимают бесконечно большие значения (явление резонанса). Очевидно, что это возможно лишь в отсутствии затухания, т. е. при условии Im $\omega_m = 0$. В реальных системах всегда существуют потери ($\omega_m = \omega'_m + i\omega''_m$) и знаменатель в (40) не обращается в ноль. При этом в случае произвольных потерь картина резонанса достаточно сложна и далека от той, какую мы имеем в одиночном резонансном контуре. Однако, при $\omega''_m/\omega'_m << 1$ эта картина существенно упрощается, и влияние потерь можно описать на привычном языке добротности, вводя её для каждой моды отношением

$$Q_m = \omega'_m / \omega''_m \tag{41}$$

Таким образом, для системы со многими степенями свободы не имеет смысла говорить о добротности системы вообще, необходимо оговаривать, о добротности какой моды идёт речь.

При изучении вынужденных колебаний важную роль играют два семейства статических характеристик: семейство амплитудно-частотных характеристик (АЧХ) и семейство фазо-частотных характеристик (ФЧХ). Эти семейства находятся из выражения для коэффициента передачи, представляющего собой отношение комплексной амплитуды напряжения на выходе фильтра к амплитуде ЭДС на входе, т.е.

$$W(\omega) = \frac{V_N(\omega)}{E_0(\omega)} = \frac{(1 - \Gamma_0)(1 + \Gamma_N)e^{-iN\theta}}{2(1 - \Gamma_0\Gamma_N e^{-2iN\theta})}$$
(42)

По определению АЧХ – это функция

$$A(\omega) = |W(\omega)| \tag{43}$$

а ФЧХ – функция

$$\Phi(\omega) = -argW(\omega) \tag{44}$$

Очевидно, что вид того и другого семейства характеристик зависит от условий на концах фильтра.

Рассмотрим влияние этих условий на $A(\omega)$ и $W(\omega)$ в полосе прозрачности фильтра, полагая для простоты, что нагрузка фильтра чисто активная (т. е. Γ_0 и Γ_N –действительные функции). При этом

$$A(\omega) = \frac{1 - \Gamma_0}{2} \cdot \frac{1 + \Gamma_N}{\sqrt{1 - \Gamma_0 \Gamma_N \cos 2N\theta + \Gamma_0^2 \Gamma_N^2}}$$
(45)

Из полученного выражения следует, что если фильтр согласован на обоих концах ($\Gamma_0 = \Gamma_N = 0$), то $A(\omega) = 1/2$, т.е. напряжение источника ЭДС делится поровну между фильтром и внутренним сопротивлением источника. Если фильтр согласован только на входе ($\Gamma_0 = 0$), или только на выходе($\Gamma_N = 0$), то $A(\omega) = (1+\Gamma_N)/2$ и $A(\omega) = (1-\Gamma_0)/2$, соответственно. Во всех трёх случаях АЧХ не зависит от числа звеньев фильтра.

Если фильтр согласован хотя бы на одном из своих концов, а нагрузка на другом конце – чисто активная, то существенно упрощается и $\Phi(\omega)$:

$$\Phi(\omega) = N\theta(\omega) \tag{46}$$

Т.е. ФЧХ с точностью до множителя N сводится к дисперсионной характеристике фильтра.

Многозвенные фильтры представляют собой разновидность длинных линий и используются в радиотехнических устройствах в качестве *линий задержки*. Время запаздывания сигнала при прохождении его через фильтр легко оценить для случая узкополосного сигнала при условии, что спектр его лежит в полосе прозрачности фильтра и укладывается в диапазон частот, в котором фазо-частотную характеристику фильтра можно считать линейной. Спектральную плотность такого сигнала на выходе фильтра для прямой волны можно записать в виде

$$u_N(\eta) = A_1(\xi) e^{i[(\Omega+\eta)t - N\theta(\Omega+\eta)t]}$$
(47)

Учитывая, что $|\eta| \leq \Delta \omega$, где $\Delta \omega$ – полуширина спектра, и принимая во внимание условие узкополосности $\Delta \omega \ll \Omega$, разложим в этом выражении нелинейную функцию $\theta(\Omega + \eta)$ в ряд по степеням η , ограничившись двумя первыми членами:

$$\theta(\Omega + \eta) \approx \theta(\Omega) + \left. \frac{d\theta}{d\omega} \right|_{\Omega} \eta$$
(48)

При этом выражение (47) примет вид

$$u_N(\eta) \approx A_1(\xi) e^{i[\Omega t - N\theta\Omega]} e^{i(t - N\frac{d\theta}{d\omega}\eta)}$$
(49)

Отсюда следует, что время задержки сигнала при прохождении через N-звенный фильтр равно $\tau_N = N \frac{d\omega}{d\theta} \Omega$. Т.е. групповая скорость $(d\omega / d\theta)$ имеет смысл времени запаздывания, приходящегося на одно звено.

2. Конкретные виды фильтров

2.1. Фильтр низкой частоты (ФНЧ)

Вид отдельного звена ФНЧ изображен на рис 4. ФНЧ служит для пропускания колебаний низкой частоты от $\omega = 0$ до ω_{cp} (*частота "среза"*). Для ФНЧ

$$Z = i\omega L, \ G = i\omega C. \tag{50}$$

При этом диспресионное уравнение имеет вид

 \sim

Т-образное звено

Рис. 4

$$\omega^2 = \frac{2}{LC} (1 - \cos\theta) \tag{51}$$

Из периодического характера этого уравнения следует, что физический смысл имеет лишь та часть дисперсионных ветвей, которая лежит в области $|\theta| \leq \pi$. Т.е. набег фазы на одно звено не может превышать π . Поскольку постоянная распространения θ связана с длиной волны λ соотношением $\lambda = 2\pi/\theta$, то из существования $\theta_{\text{max}} = \pi$ вытекает существо-вание λ_{\min} . Иными словами, волны с длиной в одну ячейку существовать не могут. Этот результат порождён дискретным характером структуры фильтра и может быть предсказан заранее.

Полоса прозрачности ФНЧ, в силу (27), задаётся условием

$$\omega^2 \le \frac{4}{LC} \left(\xi^2 = \frac{\omega^2}{\omega_{\rm cp}^2} \le 1\right) \tag{52}$$

Характеристический импеданс фильтра, состоящего из Т- и П-образных звеньев задаётся соотношениями

$$Z_x^T = \rho \sqrt{1 - \xi^2}, \ Z_x^\Pi = \frac{\rho}{\sqrt{1 - \xi^2}}, \ (\rho = \sqrt{L/C})$$
 (53)

Соответствующие им частотные зависимости изображены на рис. 5.

Рис. 5

Параметры звеньев фильтра рассчитываются по формулам

$$L = \frac{2\rho}{\omega_{\rm cp}}, \ C = \frac{2}{\rho\omega_{\rm cp}} \tag{54}$$

Время задержки на одно звено даётся выражением

Рис. 6

$$\tau = \frac{2}{\omega_{\rm cp}\sqrt{1-\xi^2}}\tag{55}$$

Графически зависимость времени задержки от частоты изображена на рис. 6

2.2. Фильтр высокой частоты (ФВЧ)

Вид отдельного звена ФВЧ изображен на рис 7. ФВЧ служит для пропускания колебаний с частотами $\omega \geq$. Для ФНЧ

$$Z = \frac{i}{\omega C}, \ G = \frac{i}{\omega L}.$$
(56)

При этом диспресионное уравнение имеет вид

П-образное звено

Рис. 7

$$\omega^2 = \frac{1}{2LC(1 - \cos\theta)} \tag{57}$$

Полоса прозрачности ФНЧ, определяется из условия

$$1 - \frac{1}{4\omega^2 LC \ge 0} \ (\xi^2 \ge 1) \tag{58}$$

Характеристический импеданс фильтра, состоящего из Т- и П-образных звеньев задаётся соотношениями

$$Z_x^T = \rho \sqrt{1 - \frac{1}{\xi^2}}, \ Z_x^\Pi = \frac{\rho \xi}{\sqrt{\xi^2 - 1}}, \ (\rho = \sqrt{L/C})$$
(59)

Соответствующие им частотные зависимости изображены на рис. 8.

Параметры звеньев фильтра рассчитываются по формулам

$$L = \frac{\rho}{2\omega_{\rm cp}}, \ C = \frac{1}{2\rho\omega_{\rm cp}} \tag{60}$$

Время задержки на одно звено даётся выражением

.

$$\tau = \frac{1}{\omega_{\rm cp}\xi\sqrt{\xi^2 - 1}}\tag{61}$$

Графически зависимость времени задержки от частоты изображена на рис.9

Рис. 9

2.3. Полосовой фильтр

Вид отдельного звена полосового фильтра изображен на рис. 10. Полосовой фильтр
 служит для пропускания колебаний в полосе частот $\omega_1 \leq \omega \leq \omega_2$.

Т-образное звено

П-образное звено

Рис. 10

Для полосового фильтра

$$Z = i\omega L_1 + i/\omega C_1, \ G = i\omega C_2 + i/\omega L_2.$$
(62)

Дисперсионное уравнение полосового фильтра определяется следующей зависимостью

$$f(\omega^2) = \sin^2 \frac{\theta}{2} \tag{63}$$

где

$$f(\omega^2) = \frac{(L_1 C_1 \omega^2 - 1)(L_2 C_2 \omega^2 - 1)}{4\omega^2 L_2 C_1} \tag{64}$$

Рис. 11

Так как $0 \leq \sin^2 \frac{\theta}{2} \leq 1$, то система будет пропускать частоты $\omega_1 \leq \omega \leq \frac{1}{\sqrt{L_1 C_1}}$ и $\frac{1}{\sqrt{L_2 C_2}} \leq \omega \leq \omega_2$. На практике интересен случай, когда $\frac{1}{\sqrt{L_1 C_1}} = \frac{1}{\sqrt{L_2 C_2}} = \omega_0, \frac{L_1}{L_2} = \frac{C_1}{C_2} = \alpha$ При этом дисперсионное уравнение принимает вид

$$\left(\frac{\omega^2}{\omega_0^2} - 1\right)\frac{\omega_0}{2\omega}\sqrt{\alpha} = \pm \sin\frac{\theta}{2} \tag{65}$$

Соответствующие ему дисперсионные кривые изображены на рис.11

$$\omega_1 = \frac{\omega_0}{\sqrt{\alpha}}(\sqrt{1+\alpha} - 1), \ \omega_2 = \frac{\omega_0}{\sqrt{\alpha}}(\sqrt{1+\alpha} + 1)$$
(66)

Полоса прозрачности фильтра определяется из условия

$$\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)^2 \alpha \le 4. \tag{67}$$

Характеристический импеданс фильтра, состоящего из Т- и П- образных звеньев соотношениями

$$Z_x^T = \rho \sqrt{1 - \frac{\alpha}{4} \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)^2}, \ Z_x^\Pi = \frac{\rho}{\sqrt{1 - \frac{\alpha}{4} \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)^2}}$$
(68)

где $\rho = \sqrt{L_2/C_1}.$

Параметры фильтра рассчитываются по следующим формулам:

$$L_{1} = \frac{\sqrt{\alpha}\rho}{\omega_{0}} = \frac{2\rho}{\omega_{2} - \omega_{1}}, \ L_{2} = \frac{L_{1}}{\alpha} = \frac{\rho(\omega_{2} - \omega_{1})}{2\omega_{0}^{2}}$$

$$C_{1} = \frac{1}{\omega_{0}^{2}L_{1}} = \frac{\omega_{2} - \omega_{1}}{2\rho\omega_{1}\omega_{2}}, \ C_{2} = \alpha C_{1} = \frac{2}{\rho(\omega_{2} - \omega_{1})}$$

$$\rho = \sqrt{\frac{L_{2}}{C_{1}}} = \sqrt{\frac{L_{1}}{\alpha C_{1}}}$$
(69)

3. Практическая часть

3.1. Фильтр низких частот

Рис. 12: Схема использованного ФНЧ из 6-ти Т-образных звеньев

Параметры используемого фильтра: $\nu_{\rm rp}=21.83~{\rm kFu},~R=583~{\rm Om},$ значения С и L указаны на схеме.

Амплитудно- и фазочастотные характеристики фильтра показаны на рисунках (13) и (14) соответственно.

Рис. 13: АЧХ

Таблица 1: Время задержки для сигнала на выходе ФНЧ

Число звеньев	Время задержки, мс
6	100
5	80
4	70
3	50
2	40
1	20
Среднее (на одно звено)	60

Расчетное время задержки (из формулы 55):

$$\tau = 25 \mathrm{Mc} \tag{70}$$

Различия с практикой связаны с сопротивлением в контуре, которое мы не учитывали в

Рис. 14: ФЧХ

теоретических подсчетах.

3.2. Фильтр высоких частот

Рис. 15: Схема использованного ФВЧ из 6-ти Т-образных звеньев

Параметры используемого фильтра:
 $\nu_{\rm rp}=7.83 {\rm k} \Gamma$ ц, R=406Ом,
C=0.025мкФ, L=4.25мГн.

Амплитудно- и фазочастотные характеристики фильтра показаны на рисунках (16) и (17) соответственно.

Рис. 16: АЧХ

Рис. 17: ФЧХ

Рис. 18: Прохождение прямоугольного импульса через ВЧФ

3.3. Полосовой фильтр

Рис. 19: Схема использованного ПФ из 2-х Т-образных звеньев

Параметры используемого фильтра: $\nu_1 = 7.83$ кГц, $\Delta \nu = 15.4$ кГц, R = 412 Ом, $C_1 = 0.025$ мкФ, $C_2 = 0.025$ мкФ, $L_1 = 8.5$ мГн, $L_2 = 4.25$ мГн.

Амплитудно- и фазочастотные характеристики фильтра показаны на рисунках (20) и (21) соответственно.

Рис. 20: АЧХ

Рис. 21: ФЧХ

Рис. 22: Прохождение прямоугольного импульса через ПФ

3.4. Заключение

Были изучены свойства линейных дискретных систем со многими степенями свободы на примере электрических фильтров. Измерены амплитудно- и фазо-частотная характеристика многозвенных фильтров низких частот, фильтров высоких частот и полосовых фильтров.