Нижегородский государственный университет имени Н.И. Лобачевского Радиофизический факультет

Отчет по лабораторной работе №3

Исследование матриц рассеяния волноводных узлов

Работу выполнили студенты 430 группы радиофизического факультата Сарафанов Ф.Г., Платонова М.В.

Нижний Новгород, 26 февраля 2019 г.

Содержание

B	веден	ние.		2
1.	Teo	ретиче	еские сведения	2
	1.1.	Матри	ща рассеяния шестиполюсника	2
	1.2.	Свойс	тва матрицы рассеяния	3
2.	Экс	перим	ент	5
	2.1.	Испол	ьзуемое оборудование	5
		2.1.1.	Определение коэффициента отражения от нагрузки с помощью из-	
			мерительной линии	5
	2.2.	Фикса	ция условного конца линии. Длина волны в волноводе	6
	2.3.	Прове	рка согласованных нагрузок	6
	2.4.	Измер	ение параметров шестиполюсников и расчет S_{km}	6
		2.4.1.	Процедура измерения диагональных элементов	7
		2.4.2.	Процедура измерения недиагональных элементов	7
		2.4.3.	Результаты измерений и расчётов	8
		2.4.4.	Полученные матрицы рассеяния	9
3.	Рез	ультат	ы	9

Введение

В данной работе изучаются с помощью матричного анализа волноводные узлы – шестиполюсники. У них с помощью измерительной линии измеряются величины, позволяющие рассчитать коэффициенты матрицы рассеяния шестиполюсников S_{km}.

На основе рассчитанной матрицы рассеяния S конкретного шестиполюсников можно попытаться решить обратную задачу: сделать на основе полученных данных предположение о возможных конструктивных вариантах волноводных узлов, находящихся внутри шестиполюсников.

1. Теоретические сведения

1.1. Матрица рассеяния шестиполюсника

Рассмотрим трехплечий волноводный узел (шестиполюсник), изображенный на рис. 1. В каждом плече выберем **плоскость отсчета** (сечение), в котором будем находить отношения амплитуд полей отраженной и падающей волн.

Рис. 1. Схема трехплечего узла (шестиполюсника)

Обозначим комплексные амплитуды полей входящих (падающих) в узел волн через U_m^+ , а амплитуды выходящих (отраженных) волн через U_k^- . Величины U_k^- зависят от амплитуд и фаз полей волн, входящих во все плечи узла, причем эти зависимости являются

линейными в силу линейности уравнений Максвелла (предполагается, что нелинейных элементов в узле нет). Связь между амплитудами полей в плечах узла записывается в виде:

$$U_{1}^{-} = S_{11}U_{1}^{+} + S_{12}U_{2}^{+} + S_{13}U_{3}^{+}$$

$$U_{2}^{-} = S_{21}U_{1}^{+} + S_{22}U_{2}^{+} + S_{23}U_{3}^{+}$$

$$U_{3}^{-} = S_{31}U_{1}^{+} + S_{32}U_{2}^{+} + S_{33}U_{3}^{+}$$
(1)

где S_{km} — комплексные коэффициенты, характеризующие волноводный узел.

Систему уравнений (1) удобно записать в матричной форме

$$\begin{pmatrix} U_1^- \\ U_2^- \\ U_3^- \end{pmatrix} = \hat{\mathbf{S}} \begin{pmatrix} U_1^+ \\ U_2^+ \\ U_3^+ \end{pmatrix}, \quad \text{где} \quad \hat{\mathbf{S}} = \begin{pmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{32} & S_{33} \end{pmatrix}$$

Матрица $\hat{\mathbf{S}}$ называется матрицей рассеяния, или *S*-матрицей (от англ. scattering – рассеяние).

Из определения элементов матрицы рассеяния следует, что для пассивных узлов, не обладающих свойством усиления мощности, модули коэффициентов передачи и отражения не могут превышать единицы.

1.2. Свойства матрицы рассеяния

Взаимный узел. Волноводные узлы, в которых отсутствуют элементы с гиротропными свойствами (например, намагниченный феррит), являются взаимными устройствами. Их матрицы рассеяния симметричны относительно главной диагонали

$$S_{mk} = S_{km}$$

Верно и обратное утверждение: если волноводное устройство описывается симметричной матрицей рассеяния, то оно является взаимным.

Отметим, что для взаимных узлов свойства матриц, доказанные для строк, выполняются и для столбцов, и наоборот.

Волноводное устройство без потерь. Матрица рассеяния волноводного устройства без потерь является унитарной, т.е.

$$\hat{\mathbf{S}}^T \hat{\mathbf{S}}^* = \hat{\mathbf{I}}$$

Можно показать [1], что для унитарной матрицы выполняются следующие свойства:

$$\sum_{m=1}^{N} S_{mk} S_{mk}^{*} = \sum_{m=1}^{N} |S_{mk}|^{2} = 1$$

т.е. сумма квадратов модулей всех матричных элементов любого столбца матрицы рассеяния узла без потерь равна единице.

Второе свойство — для любой пары столбцов сумма (по строкам) произведений каждого матричного элемента из одного столбца на комплексно сопряженный элемент из той же строки другого столбца равна нулю:

$$\sum_{m=1}^{N} S_{ml} S_{mk}^* = 0, \quad k \neq l$$

Смещение плоскости отсчета. Предположим, что известна матрица рассеяния при некотором положении плоскости отсчета z = 0 в *m*-ом плече узла. При смещении этого сечения на расстояние l_m в направлении распространения падающей волны (по направлению к узлу) новая матрица рассеяния может быть построена по следующим формулам:

$$S'_{mk} = S_{mk}e^{i(h_m l_m + h_k l_k)}$$
$$S'_{mm} = S_{mm}e^{i2h_m l_m}$$

где h_m – постоянная распространения волны в *m*-ом плече.

Таким образом, изменение плоскости отсчета приводит лишь к изменению фазы коэффициентов матрицы рассеяния, не меняя их абсолютного значения.

2. Эксперимент

2.1. Используемое оборудование

- 1) СВЧ-генератор Г4-225, в режиме работы на частоте 8.5 ГГц с установленным значением затухания $-4~\rm дB$
- 2) Три шестиполюсника, пластина для закорачивания волновода и две согласованные нагрузки
- 3) Измерительная волноводная линия 33-И с кристаллическим детектором, в цепи которого включен амперметр

2.1.1. Определение коэффициента отражения от нагрузки с помощью измерительной линии

Измерение элементов матрицы Ŝ производится с помощью измерительной линии передачи. Линия передачи позволяет измерить фазу и модуль коэффициента отражения Г:

$$\Gamma = \left(\frac{U_{\text{пад}}}{U_{\text{отр}}}\right)_{H} = |\Gamma|e^{i\varphi_{\text{H}}}$$

Модуль коэффициента отражения определялся через коэффициент стоячей волны К:

$$|\Gamma| = \frac{K-1}{K+1}$$

Измерение *К* производилось путем перемещения вдоль измерительной линии (ИЛ) зонда, показания которого связаны с высокочастотным напряжением в данном сечении линии.

Для детектирования СВЧ сигнала зонда в ИЛ стоит кристаллический детектор. При этом зависимость между током детектора I и приложенным высокочастотным напряжением |U| является нелинейной, и при малых значениях переменного напряжения детектор имеет характеристику I = f(|U|), близкую к квадратичной. В этом случае ток детектора

$$I = \alpha |U|^2,$$

где α — параметр, зависящий от свойств детектора.

В максимуме и в минимуме распределения поля в линии имеем

$$I_{\max} = \alpha |U|^2_{\min x}, \quad I_{\min} = \alpha |U|^2_{\min}$$

откуда

$$\mathbf{K} = \sqrt{\frac{I_{\max}}{I_{\min}}}$$

Величина фазы коэффициента отражения в сечении z (z < 0) — $\psi = \phi_H + 2hz$ определялась следующим образом: определялось положение минимума напряжения в ИЛ относительно плоскости присоединения нагрузки. Для этого был сначала определен т.н. **условный конец линии** — сечение волновода, соответствующее минимуму напряжения при коротком замыкании линии (z_{min}^0). Обозначив расстояние от условного конца линии z_{min}^0 до ближайшего минимума напряжения z_{min} со стороны генератора при включенной нагрузке через

$$\Delta z_{\min} \equiv z_{\min}^{0} - z_{\min} = |z_{\min} - z_{\min}^{0}| = -(z_{\min} - z_{\min}^{0})$$

И тогда фаза коэффициента отражения (с учетом выражения $h = 2\pi/\lambda_B$) определяется формулой

$$\varphi_{\rm H} = 4\pi \frac{\Delta z_{\rm min}}{\lambda_{\rm B}} - \pi$$

2.2. Фиксация условного конца линии. Длина волны в волноводе

Закоротив с помощью короткозамыкателя измерительную линию, зонд измерительной линии установили в ближайший к концу линии узел стоячей волны.

При этом координата этого узла взята за условный конец линии:

$$z_{min}^0 = 5.145$$
 см

Измерить длину волны в волноводе λ_B .

Продвигая зонд в сторону генератора до ближайшего узла, нашли значение длины волны в волноводе:

$$\frac{\lambda_B}{2} = 5.145 - 2.41 = 2.735 \text{ см} \quad \Rightarrow \quad \lambda_B = 5.47 \text{ см}$$

При этом расчетная длина волны 5.49 см, что неплохо согласуется с экспериментом.

2.3. Проверка согласованных нагрузок

Присоединив к скрутке волновода на конце измерительной линии каждую из двух используемых при выполнении работы согласованных нагрузок, определили для них коэффициенты отражения $\Gamma_{H1,2}$. Для точного расчета по приведенным в теории формулам нужно, чтобы они были равны нулю, соответственно для приближенного расчета достаточно близости к нулю.

Измеренные значения $\Gamma_{H1} = 0.0825, \Gamma_{H2} = 0.095$, достаточно малы для применения расчетных формул.

2.4. Измерение параметров шестиполюсников и расчет S_{km}

Для каждого из трех шестиполюсников было осуществлено 6 экспериментов, для измерения диагональных и недиагональных элементов.

2.4.1. Процедура измерения диагональных элементов

Пронумеровав условно плечи шестиполюсника как 1,2,3 и зафиксировав их расположение, к плечу 1 подключили генератор (Г), а плечи 2 и 3 нагрузили согласованными нагрузками (Н).

При этом матричное уравнение упрощается, и можно показать, что

$$\Gamma_{11} = S_{11} = |\Gamma_{11}| e^{i\varphi_{11}}$$

Присоединяя генератор поочередно к плечам 2 и 3, определили элементы S₂₂ и S₃₃.

2.4.2. Процедура измерения недиагональных элементов

Для измерения недиагональных элементов, 2 плечо замыкается накоротко, 3 плечо подключается к согласованной нагрузке, и тогда

$$\Gamma_{12} = S_{11} - \frac{S_{12}S_{21}}{1 + S_{22}}$$

Тогда для произведения недиагональных элементов матрицы рассеяния имеем

$$S_{12}S_{21} = (1 + S_{22}) (S_{11} - \Gamma_{12}),$$
 1-генератор 2-замыкание 3-нагрузка

Поскольку диагональные элементы S_{mm} известны (из предыдущих экспериментов), а коэффициент отражения $\Gamma_{12} = |\Gamma_{12}|e^{i\phi_{12}}$ можно найти с помощью измерительной линии, то этот эксперимент дает возможность определить произведение $S_{12}S_{21}$. При такой методике измерения невозможно определить отдельно элементы S_{12} и S_{21} , однако, если шестиполюсник не содержит невзаимных элементов, то $S_{12} = S_{21}$, и тогда

Расчетные формулы:

$$S_{12}^2 = (1 + S_{22}) (S_{11} - \Gamma_{12}),$$
 1-генератор 2-замыкание 3-нагрузка
 $S_{13}^2 = (1 + S_{33}) (S_{11} - \Gamma_{13}),$ 1-генератор 2-нагрузка 3-замыкание
 $S_{23}^2 = (1 + S_{33}) (S_{22} - \Gamma_{23}),$ 1-нагрузка 2-генератор 3-замыкание

Для расчета корней из комплексных чисел для оптимизации временных затрат использовалась система Wolfram Mathematica.

2.4.3. Результаты измерений и расчётов

N⁰	S_{km}	1	2	3	$I_{\rm max}$	I_{\min}	$z_{\min},$ CM	$ \Gamma $	φ_H	S_{km}
1	S_{11}	Г	Н	Н	52	8	4.83	0.44	-2.42	$0.44 \cdot e^{-2.24i}$
2	S_{12}	Γ	КЗ	Η	83	1	4.8	0.8	-2.35	$0.49 \cdot e^{-3.007i}$
3	S_{13}	Г	Η	КЗ	94	0.5	4.79	0.86	-2.33	$0.56 \cdot e^{-3.00i}$
4	S_{22}	Η	Γ	Η	50	7	4.89	0.46	-2.56	$0.46 \cdot e^{-2.56i}$
5	S_{23}	Η	Γ	КЗ	80	0.5	4.88	0.85	-2.53	$0.54 \cdot e^{-3.043i}$
6	S_{33}	Η	Η	Γ	52	7	4.8	0.46	-2.35	$0.46 \cdot e^{-2.35i}$

Таблица 1. Измерения характеристик шестиполюсника №1

Таблица 2. Измерения характеристик шестиполюсника №2

№	S_{km}	1	2	3	$I_{\rm max}$	I_{\min}	$z_{\min},$ cm	$ \Gamma $	φ_H	S_{km}
1	S_{11}	Г	Н	Н	94	1	4.51	0.81	-1.68	$0.81 \cdot e^{-1.68i}$
2	S_{12}	Γ	КЗ	Η	95	0.5	4.56	0.86	-1.8	$0.34 \cdot e^{-2.94i}$
3	S_{13}	Γ	Η	КЗ	90	0.5	4.58	0.86	-1.83	$0.37 \cdot e^{-3.03i}$
4	S_{22}	Η	Γ	Η	17	11	3.25	0.11	1.21	$0.11 \cdot e^{+1.21i}$
5	S_{23}	Η	Γ	КЗ	32	1	2.5	0.7	2.93	$0.86 \cdot e^{+3.12i}$
6	S_{33}	Η	Η	Γ	16	14	3.38	0.03	0.92	$0.03 \cdot e^{+0.92i}$

Таблица 3. Измерения характеристик шестиполюсника №3

N⁰	S_{km}	1	2	3	$I_{\rm max}$	I_{\min}	$z_{\min},$ CM	$ \Gamma $	φ_H	S_{km}
1	S_{11}	Γ	Н	Н	21	13	4.4	0.12	-1.43	$0.12 \cdot e^{-1.43i}$
2	S_{12}	Γ	КЗ	Η	21	12	4.41	0.14	-1.45	$0.14 \cdot e^{-2.35i}$
3	S_{13}	Γ	Η	КЗ	20	13	4.4	0.11	-1.43	$0.11 \cdot e^{-2.05i}$
4	S_{22}	Η	Γ	Η	16	12	5.15	0.07	-3.14	$0.07 \cdot e^{-3.14i}$
5	S_{23}	Н	Γ	КЗ	16	12	5.15	0.07	-3.14	$0.00 \cdot e^{-0.00i}$
6	S_{33}	Η	Η	Γ	100	1	4.53	0.82	-1.72	$0.82 \cdot e^{-1.72i}$

2.4.4. Полученные матрицы рассеяния

$$\hat{\mathbf{S}}_{1} = \begin{pmatrix} 0.44 \cdot e^{-2.24i} & 0.49 \cdot e^{-3.007i} & 0.56 \cdot e^{-3.00i} \\ 0.49 \cdot e^{-3.007i} & 0.46 \cdot e^{-2.56i} & 0.54 \cdot e^{-3.043i} \\ 0.56 \cdot e^{-3.00i} & 0.54 \cdot e^{-3.043i} & 0.46 \cdot e^{-2.35i} \end{pmatrix}$$

$$\hat{\mathbf{S}}_{2} = \begin{pmatrix} 0.81 \cdot e^{-1.68i} & 0.34 \cdot e^{-2.94i} & 0.37 \cdot e^{-3.03i} \\ 0.34 \cdot e^{-2.94i} & 0.11 \cdot e^{+1.21i} & 0.86 \cdot e^{+3.12i} \\ 0.37 \cdot e^{-3.03i} & 0.86 \cdot e^{+3.12i} & 0.03 \cdot e^{+0.92i} \end{pmatrix}$$

$$\hat{\mathbf{S}}_{3} = \begin{pmatrix} 0.12 \cdot e^{-1.43i} & 0.14 \cdot e^{-2.35i} & 0.11 \cdot e^{-2.05i} \\ 0.14 \cdot e^{-2.35i} & 0.07 \cdot e^{-3.14i} & 0.00 \cdot e^{-0.00i} \\ 0.11 \cdot e^{-2.05i} & 0.00 \cdot e^{-0.00i} & 0.82 \cdot e^{-1.72i} \end{pmatrix}$$

Полученные матрицы позволяют сказать о наличии потерь, причем первые две матрицы с некоторым приближением можно считать унитарными (сумма квадратов в строках $\sum_{m} |S_{mk}|^2 = 0.75 \div 0.9$), а третья матрица уже не вписывается в такие приближения $\sum_{m} |S_{mk}|^2 = 0.02 \div 0.68$)

Проверим взаимность матриц:

$$\hat{\mathbf{S}}_{1} \cdot \hat{\mathbf{S}}_{1}^{*} = \begin{pmatrix} 0.75 & 0.66 \cdot e^{0.10i} & 0.65 \cdot e^{0.04i} \\ 0.66 \cdot e^{-0.10i} & 0.74 & 0.69 \cdot e^{-0.07i} \\ 0.65 \cdot e^{-0.04i} & 0.69 \cdot e^{0.07i} & 0.82 \end{pmatrix}$$
$$\hat{\mathbf{S}}_{2} \cdot \hat{\mathbf{S}}_{2}^{*} = \begin{pmatrix} 0.91 & 0.51 \cdot e^{0.72i} & 0.50 \cdot e^{0.82i} \\ 0.51 \cdot e^{-0.72i} & 0.87 & 0.10 \cdot e^{-0.63i} \\ 0.50 \cdot e^{-0.82i} & 0.10 \cdot e^{0.63i} & 0.88 \end{pmatrix}$$
$$\hat{\mathbf{S}}_{3} \cdot \hat{\mathbf{S}}_{3}^{*} = \begin{pmatrix} 0.05 & 0.03 \cdot e^{0.87i} & 0.10 \cdot e^{-0.22i} \\ 0.03 \cdot e^{-0.87i} & 0.02 & 0.02 \cdot e^{-0.30i} \\ 0.10 \cdot e^{0.22i} & 0.02 \cdot e^{0.30i} & 0.68 \end{pmatrix}$$

3. Результаты

Проведя ряд экспериментов, мы определили длину волны в волноводе

$$\lambda_B = 5.47 \text{ см},$$

при теоретической длине волны 5.49 см. Для всех шестиполюсников провели по шесть экспериментов, определяя коэффициент отражения в измерительной линии, затем на основании полученных данных рассчитали матрицы рассеяния шестиполюсников:

$$\hat{\mathbf{S}}_{1} = \begin{pmatrix} 0.44 \cdot e^{-2.24i} & 0.49 \cdot e^{-3.007i} & 0.56 \cdot e^{-3.00i} \\ 0.49 \cdot e^{-3.007i} & 0.46 \cdot e^{-2.56i} & 0.54 \cdot e^{-3.043i} \\ 0.56 \cdot e^{-3.00i} & 0.54 \cdot e^{-3.043i} & 0.46 \cdot e^{-2.35i} \end{pmatrix}$$

$$\hat{\mathbf{S}}_{2} = \begin{pmatrix} 0.81 \cdot e^{-1.68i} & 0.34 \cdot e^{-2.94i} & 0.37 \cdot e^{-3.03i} \\ 0.34 \cdot e^{-2.94i} & 0.11 \cdot e^{+1.21i} & 0.86 \cdot e^{+3.12i} \\ 0.37 \cdot e^{-3.03i} & 0.86 \cdot e^{+3.12i} & 0.03 \cdot e^{+0.92i} \end{pmatrix}$$
$$\hat{\mathbf{S}}_{3} = \begin{pmatrix} 0.12 \cdot e^{-1.43i} & 0.14 \cdot e^{-2.35i} & 0.11 \cdot e^{-2.05i} \\ 0.14 \cdot e^{-2.35i} & 0.07 \cdot e^{-3.14i} & 0.00 \cdot e^{-0.00i} \\ 0.11 \cdot e^{-2.05i} & 0.00 \cdot e^{-0.00i} & 0.82 \cdot e^{-1.72i} \end{pmatrix}$$

Список литературы

[1] А.С. Зайцева, А.В. Кудрин, Л.Л. Попова. Практикум: Исследование матриц рассеяния волновых узлов. — Н. Новгород: ННГУ, 2014. — 22 с.