Нижегородский государственный университет имени Н.И. Лобачевского Радиофизический факультет

> Отчет по лабораторной работе №320 Дифракций Фраунгофера

> > Выполнили студенты 420 группы Понур К.А., Сарафанов Ф.Г., Сидоров Д.А.

Нижний Новгород, 2018

# Содержание

| 1                                                                 | Теоретическая часть |        |                                      |    |  |  |  |  |  |  |
|-------------------------------------------------------------------|---------------------|--------|--------------------------------------|----|--|--|--|--|--|--|
| 1.1 Вывод уравнения интенсивностей при дифракции Фраунгофера на ј |                     |        |                                      |    |  |  |  |  |  |  |
|                                                                   | 1.2                 | Вывод  | цусловия первого минимума видимости  | 5  |  |  |  |  |  |  |
| <b>2</b>                                                          | Рез                 | ультат | ы эксперимента                       | 6  |  |  |  |  |  |  |
|                                                                   | 2.1                 | Качес  | твенные наблюдения                   | 6  |  |  |  |  |  |  |
|                                                                   |                     | 2.1.1  | Условия эксперимента                 | 6  |  |  |  |  |  |  |
|                                                                   |                     | 2.1.2  | Изменение в                          | 6  |  |  |  |  |  |  |
|                                                                   |                     | 2.1.3  | Изменение $d$                        | 6  |  |  |  |  |  |  |
|                                                                   |                     | 2.1.4  | Поворот дифракционной решётки        | 6  |  |  |  |  |  |  |
|                                                                   |                     | 2.1.5  | Изменение $\lambda$                  | 6  |  |  |  |  |  |  |
|                                                                   |                     | 2.1.6  | Изменение длины щели источника       | 6  |  |  |  |  |  |  |
|                                                                   |                     | 2.1.7  | Изменение ширины щели источника      | 7  |  |  |  |  |  |  |
|                                                                   |                     | 2.1.8  | Порядок следования цветов            | 7  |  |  |  |  |  |  |
|                                                                   | 2.2                 | Дифр   | акционные картины для разных решёток | 8  |  |  |  |  |  |  |
|                                                                   |                     | 2.2.1  | Дифракция на одной щели              | 8  |  |  |  |  |  |  |
|                                                                   |                     | 2.2.2  | Дифракция на двух щелях              | 9  |  |  |  |  |  |  |
|                                                                   |                     | 2.2.3  | Дифракция на пятнадцати щелях        | 10 |  |  |  |  |  |  |

# 1. Теоретическая часть

В данной работе изучается дифракция на одной щели, двух щелях и на решетке из нескольких щелей. Наблюдения и измерения производятся при помощи гониометра – оптического прибора для измерения углов с большой точностью.

При помощи гониометра изучают угловое распределение интенсивности дифрагированного света. Углы дифракции изменяются оптическим компенсатором (микроскопом с отчетным микрометром).

При дифракции Фраунгофера на щели интенсивность излучения в плоскости *xy*, перпендикулярной щели, зависит от угла дифракции по закону

$$I_{\theta} = I_0 \frac{\sin^2 \frac{kb \sin \theta}{2}}{\left(\frac{kb \sin \theta}{2}\right)^2},\tag{1}$$

где  $I_0$ - интенсивность в направлении  $\theta = 0$ ,  $I_{\theta}$ - интенсивность в направлении  $\theta$ , b- ширина щели, k- волновое число.

При дифракции Фраунгофера от решетки с периодом d из N одинаковых щелец ширины b зависимость интенсивность  $I_{\theta}$  описывается формулой

$$I_{\theta} = I_0 \frac{\sin^2 \frac{kb \sin \theta}{2}}{\left(\frac{kb \sin \theta}{2}\right)^2} \cdot \frac{\sin^2 \frac{Nkd \sin \theta}{2}}{\sin^2 \frac{kd \sin \theta}{2}}$$
(2)

Рассмотрим влияние размеров источника света на вид дифракционной картины при дифракции на двух щелях. В данной работе источником света служит щель коллиматора. Обозначим ширину этой щели l, а её угловой размер  $\alpha$ . От каждой точки источника на объект дифракции падает плоская волна и создает в фокальной плоскости дифракционную картину. Крайние точки источника K и f создают картины, центры которых K' и f'смещены относительно друг друга на угловое расстояние  $\alpha$ .

Контрастность дифракционных картин характеризуется видимостью

$$V = \frac{I_{max} - I_{min}}{I_{max} + I_{min}},\tag{3}$$

где  $I_{max}$ - интенсивность в максимуме,  $I_{min}$ - интенсивность в ближайшем к нему минимуме.

Видимость дифракционной картины от двух щелей зависит от углового размера источника  $\alpha$ . Если яркость источника одинакова по всей ширине, то при увеличении  $\alpha$  первый минимум видимости наступит, когда  $\alpha$  станет равно  $\theta_1$ - угловому расстоянию между нулевым и первым максимами. При малых углах

$$\sin \theta_1 \simeq \theta_1 = \frac{\lambda}{d}, \ \alpha = \frac{l}{F} \tag{4}$$

здесь  $\lambda$ - длина световой волны источника, d- фокусное расстояние между щелями на экране, F- фокусное расстояние линзы коллиматора.

Условие первого минимума имеет вид

$$l = \theta_1 F = \frac{\lambda F}{d} \tag{5}$$

Формула (5) даёт возможность определить ширину источника света по найденному опытным путём расстоянию d между щелями, при котором наступает размытие дифракционной картины.

Таким был метод, использованный в 1920 г. Майкельсоном для измерения углового расстояния между компонентами двойной звезды Капеллы и диаметра звезды Бетельгейзе.

# Вывод уравнения интенсивностей при дифракции Фраунгофера на решетке



Рис. 1: Caption here

Сначала выведем дифракцию на первой щели, пользуясь принципом Гюйгенса-Френеля.

Пусть на щель падает свет амплитудой  $E_0$ , длиной волны  $\lambda$ . Щель разобьем на бесконечно малые излучатели шириной dx и с амплитудой излучаемой волны  $\frac{E_0}{b}dx$ .

Набег фазы для каждого такого излучателя относительно излучателя с координатой x = 0 будет  $k\Delta = k \cdot x \sin \Theta$ :

$$d\widehat{E}(x) = \frac{\widehat{E}_0}{b} \cdot \exp\left(i \cdot kx \sin\Theta\right) dx \tag{6}$$

Проинтегрируем по всей щели:

$$\widehat{E}_1 = \widehat{E}_0 \int_0^b \frac{1}{i \cdot kb \sin \Theta} \exp\left(i \cdot kx \sin \Theta\right) d[i \cdot kx \sin \Theta] =$$
(7)

$$=\widehat{E}_{0}\frac{\exp\left(i\cdot kb\sin\Theta\right)-1}{i\cdot kb\sin\Theta}=\widehat{E}_{0}\exp\left(i\cdot\frac{kb\sin\Theta}{2}\right)\frac{\exp\left(i\cdot\frac{kb\sin\Theta}{2}\right)-\exp\left(-i\cdot\frac{kb\sin\Theta}{2}\right)}{i\cdot kb\sin\Theta}=$$
(8)

$$=\widehat{E}_{0}\exp\left(i\cdot\frac{kb\sin\Theta}{2}\right)\operatorname{sinc}\left(\frac{kb\sin\Theta}{2}\right)\tag{9}$$

«Спрячем» экспоненту в комплексную амплитуду. Это не повлияет на решение, так как для всех щелей набег фазы в этой экспоненте будет одинаков.

$$\widehat{E}_1 = \widehat{E}_a \operatorname{sinc}\left(\frac{kb\sin\Theta}{2}\right) \tag{10}$$

Теперь рассмотрим сложение волн, пришедших от всех щелей в дифракционной решетке. Нетрудно показать, что набег фазы будет зависеть от номера щели и угла Θ:

$$\widehat{E}_m = \widehat{E}_1 \exp\left(i \cdot k(m-1)d\sin\Theta\right),\tag{11}$$

где *т* – номер щели.

Тогда можем записать сумму волн:

$$\widehat{E}(\Theta) = \widehat{E}_1 \left( 1 + \exp\left(i \cdot kd\sin\Theta\right) + \ldots + \exp\left(i \cdot k(N-1)d\sin\Theta\right) \right)$$
(12)

Второй множитель здесь – решеточный множитель, который дает постоянный сдвиг фазы и множитель вида  $\sin Nx / \sin x$ . Нетрудно показать, что тогда

$$\widehat{E}(\Theta) \sim \widehat{E}_1 \operatorname{sinc}\left(\frac{kb\sin\Theta}{2}\right) \left[\frac{\sin\left(\frac{Nkd\sin\Theta}{2}\right)}{\sin\left(\frac{kd\sin\Theta}{2}\right)}\right]$$
(13)

И тогда окончательный результат:

$$I(\Theta) = I_0 \operatorname{sinc}^2 \left(\frac{kb\sin\Theta}{2}\right) \left[\frac{\sin\left(\frac{Nkd\sin\Theta}{2}\right)}{\sin\left(\frac{kd\sin\Theta}{2}\right)}\right]^2$$
(14)

## 1.2. Вывод условия первого минимума видимости

Полосы на экране будут видны достаточно отчётливо, пока расстояние между полосами  $\Delta x$  будет меньше  $\delta x$ .  $\delta x$  связана с линейным размером источника l соотношением

$$\delta x = \frac{dl}{F} \tag{15}$$

Угловой размер источника:

$$\alpha = \frac{l}{F} \tag{16}$$

Угловая ширина полос:

$$\theta = \frac{\lambda}{d} \tag{17}$$

Тогда при <br/>  $\alpha < \theta$ картина будет видна достаточно отчетливо. Отсюда получаем условие первого минимума видимости

$$l = \frac{\lambda F}{d} \tag{18}$$

# 2. Результаты эксперимента

## 2.1. Качественные наблюдения

#### 2.1.1 Условия эксперимента

Изначально свет идет от лампочки накаливания, размер спиральки которой 3 мм.

### **2.1.2** Изменение *b*

С изменением ширины щели решетки – уменьшением *b* картинка расширяется, увеличивается расстояние между максимумами

#### **2.1.3** Изменение *d*

Экспериментально было установлено, что с изменением периода решетки (уменьшением d) картинка расширяется, увеличивается расстояние между максимумами

Теоретически это нетрудно обосновать. Рассмотрим решёточный множитель в формуле (14). Функция имеет минимумы в точках

$$\sin \theta_m = \frac{\lambda m}{Nd}, \ m = 1, 2 \dots \frac{Nd}{\lambda}.$$
(19)

Таким образом, при уменьшении d увеличивается расстояние между максимумами.

#### 2.1.4 Поворот дифракционной решётки

С увеличением угла, под которым расположена дифракционная решетка картина расширяется

#### **2.1.5** Изменение $\lambda$

Для красного ширина центрального максимума шире, чем для зеленого. Полушириной центрального максимума будем называть угловое расстояние от  $\theta = 0$  до ближайшего минимума. Тогда

$$\theta_0 = \arcsin \frac{\lambda}{Nd} \tag{20}$$

То есть при увеличении длины волны картинка расширяется. Что мы и наблюдали в эксперименте.

#### 2.1.6 Изменение длины щели источника

Дифракционная картина при изменении длины щели источника не изменяется.

## 2.1.7 Изменение ширины щели источника

Таблица 1: Показания микрометра щели источника и ширина щели для разных дифракционных картин: З–щель закрыта, Ч–чёткая дифракционная картина, Р–размытая дифракционная картина

| 3, $z$ , mm·10 <sup>-2</sup> | Ч, $z$ , мм·10 <sup>-2</sup> | P, z, mm $\cdot 10^{-2}$ | Ч, $\Delta x$ , мм·10 <sup>-2</sup> | P, $\Delta x$ , MM·10 <sup>-2</sup> |
|------------------------------|------------------------------|--------------------------|-------------------------------------|-------------------------------------|
| 7                            | 10                           | 18                       | 3                                   | 11                                  |

## 2.1.8 Порядок следования цветов

Распределение цветов при дифракции в белом свете: СЗЖК

## 2.2. Дифракционные картины для разных решёток

### 2.2.1 Дифракция на одной щели

| Ν  | $\Theta^{\circ}$ | $\Theta'$ | $\Theta''$ | $\Delta\Theta^\circ$ | $\Delta\Theta'$ | $\Delta \Theta''$ | $\Delta\Theta,''$ | погрешность, " | sec3    |
|----|------------------|-----------|------------|----------------------|-----------------|-------------------|-------------------|----------------|---------|
| 3  | 275              | 71        | 28         | 0                    | 0               | 0                 | 0                 | 0              | 749.00  |
| 2  | 275              | 67        | 22         | 0                    | 4               | 6                 | 246               | 31             | 503.00  |
| 1  | 275              | 63        | 8          | 0                    | 4               | 14                | 254               | 32             | 249.00  |
| -1 | 275              | 54        | 50         | 0                    | 9               | -42               | 498               | 62             | -249.00 |
| -2 | 275              | 50        | 39         | 0                    | 4               | 11                | 251               | 31             | -500.00 |
| -3 | 275              | 46        | 31         | 0                    | 4               | 8                 | 248               | 31             | -748.00 |

Таблица 2: b = 0.52 мм, N = 1, по минимумам



Рис. 2: Теоретический вид распределения интенсивности, дифракция на одной щели

## 2.2.2 Дифракция на двух щелях

| Ν  | $\Theta^{\circ}$ | $\Theta'$ | $\Theta''$ | $\Delta\Theta^\circ$ | $\Delta\Theta'$ | $\Delta \Theta''$ | $\Delta\Theta, ''$ | погрешность, " | sec3    |
|----|------------------|-----------|------------|----------------------|-----------------|-------------------|--------------------|----------------|---------|
| 6  | 275              | 50        | 26         | 0                    | 0               | 0                 | 0                  | 0              | 398.99  |
| 5  | 275              | 49        | 6          | 0                    | 1               | 20                | 80                 | 10             | 318.98  |
| 4  | 275              | 48        | 19         | 0                    | 1               | -13               | 47                 | 6              | 271.99  |
| 3  | 275              | 47        | 40         | 0                    | 1               | -21               | 39                 | 5              | 232.99  |
| 2  | 275              | 45        | 59         | 0                    | 2               | -19               | 101                | 13             | 131.99  |
| 1  | 275              | 44        | 30         | 0                    | 1               | 29                | 89                 | 11             | 43.00   |
| -1 | 275              | 43        | 7          | 0                    | 1               | 23                | 83                 | 10             | -40.02  |
| -2 | 275              | 41        | 38         | 0                    | 2               | -31               | 89                 | 11             | -129.01 |
| -3 | 275              | 39        | 58         | 0                    | 2               | -20               | 100                | 13             | -229.00 |
| -4 | 275              | 39        | 13         | 0                    | 0               | 45                | 45                 | 6              | -274.02 |
| -5 | 275              | 38        | 30         | 0                    | 1               | -17               | 43                 | 5              | -317.00 |
| -6 | 275              | 37        | 13         | 0                    | 1               | 17                | 77                 | 10             | -394.03 |

Таблица 3: b = 0.52 мм, d = 1.5 мм, N = 2, по минимумам



Рис. 3: Теоретический вид распределения интенсивности, дифракция на двух щелях

## 2.2.3 Дифракция на пятнадцати щелях

| Ν  | $\Theta^{\circ}$ | $\Theta'$ | $\Theta''$ | $\Delta\Theta^\circ$ | $\Delta\Theta'$ | $\Delta \Theta''$ | $\Delta\Theta, ''$ | погрешность, " | sec3   |
|----|------------------|-----------|------------|----------------------|-----------------|-------------------|--------------------|----------------|--------|
| -1 | 275              | 52        | 17         | 0                    | 0               | 0                 | 0                  | 0              | 73.00  |
| 0  | 275              | 51        | 4          | 0                    | 1               | 13                | 73                 | 9              | 0.00   |
| 1  | 275              | 49        | 59         | 0                    | 2               | -55               | 65                 | 8              | -65.00 |

Таблица 4: b = 1 мм, d = 2 мм, N = 15, по максимумам



Рис. 4: Теоретический вид распределения интенсивности, дифракция на пятнадцати щелях