Нижегородский государственный университет имени Н.И. Лобачевского Радиофизический факультет

Отчет по лабораторной работе №219

Исследование электронных ламп диода и триода

Выполнил студент 420 группы Сарафанов Ф.Г.

Нижний Новгород, 2017

Содержание

Bı	ведеі	ние	2						
1	Исс	следование лампы диода	3						
	1.1	Снятие статической характеристики диода	3						
2	Исс	следование лампы триода	4						
	2.1	Статические характеристики триода	4						
		2.1.1 Расчет предельной мощности	4						
		2.1.2 Снятие анодной характеристики	5						
		2.1.3 Снятие сеточной характеристики	7						
3	Опр	ределение коэффициента усиления усилителя	9						
	3.1	Изучение АЧХ усилителя	9						
	3.2	Зависимость усиления от сопротивления нагрузки	11						
4	Вывод формул								
	4.1	Связь динамической и статической крутизны	13						
	4.2	Скорость электрона на подлете к аноду	13						
5	Зак	слючение	15						

Введение

Целью данной работы является изучение работы простейших электронных ламп – диода и триода. В установке используется одна половина двойного триода 6H8C. Путем соединения управляющей сетки с анодом триода можно исследовать эту лампу в качестве диода.

Рис. 1: Триод в режиме усиления

1 Исследование лампы диода

1.1 Снятие статической характеристики диода

U_a, \mathbf{B}	I, мА						 				
2	4.43										•
4	9.79		80							~	
6	16.14			Ī				•			
8	24.6		60	-							
10	32.9	-									-
12	40.7	ľ, m/	40								
14	48.9					•					
16	57.4		20								
18	66.2				-						
20	74.6		0				 				
22	82.5		Ŭ	0	5	10	15	Р	20		25
24	89.3						U_a ,	D			

Таблица 1: Снятие вольт-амперной характеристики (ВАХ) диода

Используя приближенное равенство

$$S = \frac{\Delta I_a}{\Delta U_a},\tag{1}$$

найдем значение крутизны в нескольких точках кривой:

$$S_{14-16} = \frac{57.4 - 48.9}{2} = 4.25 \cdot 10^{-3} \text{ Om}^{-1}$$
(2)

$$S_{16-18} = \frac{66.2 - 57.4}{2} = 4.4 \cdot 10^{-3} \text{ Om}^{-1}$$
(3)

$$\Delta S = \sqrt{\left(\frac{\partial S}{\partial I} \cdot \Delta I\right)^2 + \left(\frac{\partial S}{\partial U} \cdot \Delta U\right)^2} = \sqrt{\left(\frac{\Delta I}{U}\right)^2 + \left(\frac{I\Delta U}{U^2}\right)^2} =$$
(4)

$$= \sqrt{\left(\frac{2 \cdot 9.4 \cdot 10^{-5}}{2}\right)^2 + \left(\frac{2 \cdot 2 \cdot 10^{-3} \cdot 0.92}{4}\right)^2} = 0.92 \cdot 10^{-3} \text{ Om}^{-1}$$
(5)

Тогда

$$S = [4 \pm 0.92] \cdot 10^{-3} \text{ Om}^{-1} \tag{6}$$

2 Исследование лампы триода

2.1 Статические характеристики триода

2.1.1 Расчет предельной мощности

В соответствии с максимальной рассеиваемой мощностью лампы рассчитали максимально допустимый ток для напряжений в диапазоне [10...240] вольт.

$$P_{max} = U_a \cdot I_a = \text{const} = 2.5 \text{ Br}$$
(7)

$$I_a^{max} = \frac{P_{max}}{U_a} = \frac{2.5}{U_a} \tag{8}$$

Рис. 2: Кривая максимально допустимого тока – $I_a = I_a(U_a)$

2.1.2 Снятие анодной характеристики

Рис. 3: Анодная характеристика триода – $I_a = I_a(U_a)|_{U_c = \text{const}}$

Были сняты 4 анодные характеристики для разных напряжений на сетке: -7, -3, +1 и +5 вольт.

Аппроксимирующая прямая подобрана «на глаз», руководствуясь тем соображением, что в последних измерениях каждой серии точки точнее ложатся на прямую. Отсюда внутреннее сопротивление триода составляет

$$R_i = 7100 \text{ Om} \pm 58 \text{ Om}$$
 (9)

Где

$$\Delta I = 0.527\% = 0.000094 = 9.4 \cdot 10^{-5} \text{ A}$$
(10)

$$\Delta U = 0.527\% = 0.92 \text{ B} \tag{11}$$

$$R_i = \frac{U}{I} \tag{12}$$

$$\Delta R_i = \sqrt{\left(\frac{\partial R_i}{\partial I} \cdot \Delta I\right)^2 + \left(\frac{\partial R_i}{\partial U} \cdot \Delta U\right)^2} = \sqrt{\left(\frac{\Delta U}{I}\right)^2 + \left(\frac{U\Delta I}{I^2}\right)^2} =$$
(13)

$$= \sqrt{\left(\frac{0.92}{18.7 \cdot 10^{-3}}\right)^2 + \left(\frac{120 \cdot 9.4 \cdot 10^{-5}}{(18.7 \cdot 10^{-3})^2}\right)^2} = 58.82 \text{ Om}$$
(14)

Снятие характеристики завершали при приближении к предельной мощности, следя за заранее рассчитанным предельным значением тока из таблицы (табл. 2).

U_a, B	$I_a _{U_c=-7 \text{ B}}$	$I_a _{U_c=-3 \text{ B}}$	$I_a _{U_c=+1 \text{ B}}$	$I_a _{U_c=+5 \text{ B}}$	$I_{max}(U_a),$ мА
10	_	_	3.17	14.4	250
20	_	_	4.41	17.42	125
30	_	_	5.7	20.4	83.333
40	_	_	6.98	22.6	62.5
50	_	0.197	8.31	24.7	50
60	_	0.515	9.67	26.8	41.667
70	_	1.02	11.08	28.9	35.714
80	_	1.68	12.52	30.7	31.25
90	_	2.5	14.01	_	27.778
100	_	3.44	15.56	_	25
110	0.158	4.43	17.11	_	22.727
120	0.325	5.51	18.7	_	20.833
130	0.595	6.68	_	_	19.231
140	0.95	7.91	_	_	17.857
150	1.42	9.19	_	_	16.667
160	1.99	10.53	_	_	15.625
170	2.68	11.93	_	_	14.706
180	3.46	13.38	_	_	13.889
190	4.36	_	_	_	13.158
200	5.25	_	_	_	12.5
210	6.31	_	_	_	11.905
220	7.43	_	_	_	11.364
230	8.61	_	_	_	10.87
240	9.87	_	_	_	10.417

Таблица 2: Снятие анодной характеристики триода

6

2.1.3 Снятие сеточной характеристики

Рис. 4: Анодно-сеточная характеристика триода – $I_a = I_a(U_c)|_{U_a = \text{const}}$

Были сняты 4 анодно-сеточных характеристик для разных напряжений на аноде: 70, 90, 110 и 130 вольт.

Для каждой из характеристик методом подсчитали коэффициент крутизны S на линейном участке графика.

Коэффициент найден аналогично предыдущей серии опытов.

$$S = 2.91 \cdot 10^{-3} \text{ Om}^{-1} = [2 \pm 0.22] \cdot 10^{-3} \text{ Om}^{-1}$$
(15)

$$\Delta S = \sqrt{\left(\frac{\partial S}{\partial I} \cdot \Delta I\right)^2 + \left(\frac{\partial S}{\partial U} \cdot \Delta U\right)^2} = \sqrt{\left(\frac{\Delta I}{U}\right)^2 + \left(\frac{I\Delta U}{U^2}\right)^2} =$$
(16)

$$= \sqrt{\left(\frac{9.4 \cdot 10^{-5}}{10}\right)^2 + \left(\frac{24 \cdot 10^{-3} \cdot 0.92}{100}\right)^2} = 0.22 \cdot 10^{-3} \text{ Om}^{-1}$$
(17)

U_c, \mathbf{B}	$I_a _{U_a=70 \text{ B}}$	$I_a _{U_a=90 \text{ B}}$	$I_a _{U_a=110 \text{ B}}$	$I_a _{U_a=130 \text{ B}}$
-7	_	_	0.141	0.569
-6.5	_	_	0.247	0.858
-6	_	_	0.414	1.21
-5.5	_	0.177	0.77	1.82
-5	_	0.378	1.115	2.51
-4.5	0.138	0.72	1.666	3.47
-4	0.308	1.162	2.44	4.29
-3.5	0.608	1.723	3.13	5.4
-3	1.11	2.487	4.11	6.66
-2.5	1.71	3.35	5.46	7.97
-2	2.64	4.45	6.87	9.41
-1.5	3.72	5.64	8.08	10.62
-1	4.92	6.86	9.56	12.33
-0.5	6.31	8.47	11.11	14.3
0	7.71	10.5	12.4	15.33
0.5	8.74	11.5	14.48	17.66
1	9.96	13.2	16.33	19.19
1.5	11.19	14.2	17.3	_
2	12.6	15.8	18.88	_
2.5	14.1	17.2	20.3	_
3	15.53	18.5	22.2	_
3.5	16.78	20.2	_	_
4	18.33	21.8	_	_
4.5	19.8	23	—	_
5	21.3	24.9	_	_

Таблица 3: Снятие анодно-сеточной характеристики триода

Рассчитаем статический коэффициент усиления μ по средним значениям параметров S и R_i :

$$\mu = R_i \cdot S = 7100 \cdot 2 \cdot 10^{-3} = 14.2 = 14 \pm 1.56 \tag{18}$$

$$\Delta \mu = \sqrt{\left(R_i \cdot \Delta S\right)^2 + \left(S \cdot \Delta R_i\right)^2} = \sqrt{\left(7100 \cdot 0.22 \cdot 10^{-3}\right)^2 + \left(2 \cdot 10^{-3} \cdot 58\right)^2} = 1.56$$
(19)

3 Определение коэффициента усиления усилителя

3.1 Изучение АЧХ усилителя

Подав на вход усилителя сигнал амплитудой 100 мВ с генератора ГЗ-112, изменяя частоту, сняли зависимость выходной амплитуды от частоты (АЧХ) и рассчитали коэффициент усиления для каждого значения частоты.

На частоте порядка 100 кГц начинает наблюдаться падение выходной амплитуды (срыв усиления), на частоте 220 кГц коэффициент усиления падает вдвое.

На частоте более 1 мГц усилитель перестает выполнять функцию усиления (коэффициент усиления меньше единицы).

ν, Γц	$2U_{\text{вых}},$ клеток	Множитель	$U_{\rm bmx}, {\rm MB}$	K
1×10^{3}	5	0.5	1250	12.5
4.8×10^4	5	0.5	1250	12.5
1×10^5	4	0.5	1000	10
$1.5{ imes}10^5$	3.6	0.5	900	9
2×10^5	6.8	0.2	680	6.8
$2.5{ imes}10^5$	5.3	0.2	530	5.3
3×10^5	4.9	0.2	490	4.9
4×10^5	7.8	0.1	390	3.9
6×10^5	5.1	0.1	255	2.55
1×10^{6}	3.2	0.1	160	1.6
2×10^6	1.9	0.1	95	0.95
5×10^6	1.1	0.1	55	0.55
1×10^7	1.1	0.1	55	0.55

Таблица 4: Снятие амплитудно-частотной характеристики усилителя

Рис. 5: Зависимость коэффициента усиления от частоты входного сигнала

3.2 Зависимость усиления от сопротивления нагрузки

На частоте сигнала 1 кГц измерили амплитуду выходного сигнала последовательно для всех сопротивлений $R_a \in [0.5 \dots 1000]$ кОм:

Таблица 5: Снятие зависимости динамического коэффициента усиления от сопротивления нагрузки ${\cal R}_a$

R_a , кОм	$2U_{\rm вых},$ клеток	Множитель	$U_{\rm bbix}, {\rm MB}$	K
0.5	3.4	0.05	85	0.85
1	6.2	0.05	155	1.55
2	5.8	0.1	290	2.9
5	5.6	0.2	560	5.6
10	3.4	0.5	850	8.5
20	5	0.5	1250	12.5
50	6	0.5	1500	15
100	6.4	0.5	1600	16
200	6.8	0.5	1700	17
500	6.8	0.5	1700	17
1000	6	0.5	1500	15

Рис. 6: Зависимость коэффициента усиления от сопротивления нагрузки

Максимальный коэффициент усиления достигается при $R_a = 200$ кОм и равен 17, далее рост усиления прекращается и наблюдается спад усиления.

Это соответствует тому, что при увеличении R_a рабочая точка на динамической анодносеточной характеристике смещается ближе к основанию, где R_i возрастает, а μ уменьшается

$$S_d = \frac{S_i}{1 + \frac{R_a}{R_i}} \tag{20}$$

Из формулы следует, что динамический коэффициент не может превзойти статический. Практически динамический коэффициент оказался меньше статического примерно в два раза.

4 Вывод формул

4.1 Связь динамической и статической крутизны

По определению, коэффициенты крутизны – статический S_i и динамический S_d , а также внутреннее сопротивление триода R_i запишутся как

$$S_d = \frac{dI_a}{dU_c}, \quad R_i = \frac{dU_a}{dI_a}, \quad S_i = \frac{\partial I_a}{\partial U_c}$$
(21)

Из закона Ома для цепи источника анода следует

$$U_a = \varepsilon_a - I_a R_a \tag{22}$$

Тогда дифференциал U_a будет

$$dU_a = -dI_a R_a \tag{23}$$

Из формулы (22) можно выразить анодный ток

$$I_a = \frac{E_a}{R_a} - \frac{U_a}{R_a} \tag{24}$$

И найти его полный дифференциал:

$$dI_a = \frac{\partial I_a}{\partial U_c} dU_c + \frac{\partial I_a}{\partial U_a} dU_a = S_i \cdot dU_c + \frac{1}{R_i} dU_a$$
(25)

Тогда после несложных преобразований

$$\frac{dI_a}{dU_c} = S_i + \frac{1}{R_i} \frac{dU_a}{dU_c} = S_i - \frac{R_a}{R_i} \frac{dI_a}{\cdot dU_c} = S_i - \frac{R_a}{R_i} S_d$$
(26)

И окончательный результат

$$S_d \left[1 + \frac{R_a}{R_i} \right] = S_i \tag{27}$$

$$S_d = \frac{S_i}{1 + \frac{R_a}{R_i}} \tag{28}$$

Из полученной формулы (28) следует, что динамическая крутизна будет всегда меньше статической.

4.2 Скорость электрона на подлете к аноду

При движении в однородном электрическом поле между катодом и анодом электрон равномерно ускоряется в сторону анода. Энергия, приобретенная электроном при ускорении, равна работе электрического поля, и тогда скорость при прилете на анод выразится из формулы

$$\frac{mv_{max}^2}{2} = A = F_L \cdot l = e \cdot E \cdot l = eU_a \tag{29}$$

Рис. 7: Движение электрона в однородном электрическом поле лампы

Откуда

$$v_{max} = \sqrt{2\frac{e}{m}U} \tag{30}$$

Кинематически время пролёта можно вывести так:

$$E = \frac{U}{l} \tag{31}$$

$$F = eE = q\frac{U}{l} \tag{32}$$

$$a = \frac{e}{m} \frac{U}{l} \tag{33}$$

$$v = \frac{e}{m} \frac{Ut}{l} \tag{34}$$

$$x = \frac{e}{m} \frac{Ut^2}{2l} \tag{35}$$

(36)

Если t^* – время пролёта:

$$l = \frac{e}{m} \frac{Ut^{*2}}{2l} \tag{37}$$

Откуда

$$t^* = l \sqrt{\frac{2m}{eU}} \tag{38}$$

5 Заключение

Были изучены лампы диода и триода. Снята ВАХ диода на значениях анодного напряжения $U_a \in [0..25]$ В. Посчитана крутизна ВАХ диода и её погрешность:

$$S = [4 \pm 0.92] \cdot 10^{-3} \text{ Om}^{-1}$$

Рассчитана кривая максимальной мощности лампы, не превышая которую были проведены следущие эксперименты.

Снята анодная характеристика триода $I_a = I_a(U_a)|_{U_c=\text{const}}$ для разных напряжений на сетке: -7, -3, +1 и +5 вольт. Посчитано внутреннее сопротивление на линейном участке графика и его погрешность:

$$R_i = 7100 \text{ Om} \pm 58 \text{ Om}$$

Снята анодно-сеточная характеристика триода $I_a = I_a(U_c)|_{U_a=\text{const}}$ для разных напряжений на аноде: 70, 90, 110 и 130 вольт. Посчитан коэффициент крутизны на линейных участках графика и его погрешность:

$$S = 2.91 \cdot 10^{-3} \text{ Om}^{-1} = [2 \pm 0.22] \cdot 10^{-3} \text{ Om}^{-1}$$

Найдено значение статического коэффициента усиления триода и его погрешность:

$$\mu = R_i \cdot S = 7100 \cdot 2 \cdot 10^{-3} = 14.2 = 14 \pm 1.56$$

Показано математически, что динамический коэффициент не превышает статический.

Изучено поведение АЧХ усилителя на частотах от 1 кГц до 10 мГц, наблюдался срыв усиления на частоте порядка 100 кГц.

Рассмотрена зависимость динамического коэффициента усиления от сопротивления нагрузки при фиксированной частоте 1 кГц и сопротивлении от 0.5 до 1000 кОм. Максимальный коэффициент наблюдался при сопротивлении 200..500 кОм и равен 17.