Нижегородский государственный университет имени Н.И. Лобачевского Радиофизический факультет

Отчет по лабораторной работе $\$^{0}210$

Исследование линейных двухполюсников и четырёхполюсников

Выполнили студенты 420 группы Понур К.А., Сарафанов Ф.Г., Сидоров Д.А.

Нижний Новгород, 2017

Содержание

1	Pac	иет цепей	2
	1.1	Расчет импеданса некоторых линейных элементов	2
		1.1.1 Импеданс конденсатора	2
		1.1.2 Импеданс индуктивности	3
		1.1.3 Импеданс резистора	3
2	Лву	хполюсники. Расчет цепи и экспериментальные ланные	4
_	2.1	Схема \mathbb{N}_1 . Последовательная RC – непочка	4
		2.1.1 Импеданс	4
		2.1.2 Разность фаз	4
		2.1.3 Результаты эксперимента	5
	2.2	Схема №2. Последовательная <i>LC</i> – цепочка	6
		2.2.1 Импеланс	6
		2.2.1 Пыподано	6
		9.9.3 Резильтаты эксперимента	7
	<u> </u>	CYOND \mathbb{N}^3 Прухношосник $B[RC]$	8
	2.0	2.31 Имполане	8
		2.3.1 Infinedant	0
		2.3.2 1 азность фаз	9
	9.4	2.5.5 1 esymetration of $P[DI]$	9 11
	2.4	Схема π^{24} . Двухполюсник $\kappa[\kappa L]$	11
		2.4.1 IMMEdate	11 11
		2.4.2 Разность фаз	11 10
		2.4.3 Результаты эксперимента	12
3	Чет	ырехполюсники. Расчет цепи и экспериментальные данные	13
	3.1	Схема №5. Простейший мостовой фазовращатель	13
		3.1.1 Коэффициент передачи	14
		3.1.2 Разность фаз	14
		3.1.3 Результаты эксперимента	15
	3.2	Схема №6. Четырехполюсник CR-CR-CR	17
		3.2.1 Расчет комплексного коэффициента передачи	17
		3.2.2 Результаты эксперимента	19
		3.2.3 Расчет импеданса входа	20
4	Pac	иет «экзотических» четырехполюсников	21
-	4 1	Четырехполюсник-фильтр	- - 21
	4.1	Лвойной Т-мост – узкополосный заграждающий фильтр	$\frac{21}{22}$
	1.4	421 Эквивалентная суема	$\frac{22}{22}$
		4.2.2 Amenutures vanaktenucture	22 91
		4.2.2 Поплитудная характеристика	24 91
		т.2.0 Фазовал ларактеристика	24 4
5	Зак	иючение	25

1. Расчет цепей

1.1. Расчет импеданса некоторых линейных элементов

Будем рассчитывать импеданс методом комплексных амплитуд. Полагая известным

$$\widehat{U} = U_0 e^{i(\omega t + \varphi_u)} = U_0 \exp(i\varphi_u) \exp(i\omega t) = \widehat{U}_0 \exp(i\omega t)$$
(1)

где $\hat{U}_0 = U_0 \exp(i\varphi_u)$ – комплексная амплитуд напряжения, включающая в себя начальную фазу.

Будем предполагать, что мы нашли $\widehat{J} = \widehat{J}(\widehat{U})$, используя связь тока и напряжения:

$$\widehat{J} = \widehat{J}_0 \exp(i\omega t) \tag{2}$$

Возможен обратный ход – от известного тока через линейную связь перейти к напряжению.

Тогда импеданс по определению найдется как

$$\widehat{z} = \frac{\widehat{U}_0}{\widehat{J}_0} \tag{3}$$

1.1.1 Импеданс конденсатора

Рассчитаем импеданс конденсатора методом комплексных амплитуд.

$$\widehat{J} = C \frac{\mathrm{d}\widehat{U}}{\mathrm{d}t} \tag{4}$$

Отсюда получаем:

$$\widehat{J} = i\omega C U_0 \exp(i\varphi_u) \exp(i\omega t) \tag{5}$$

И комплексная амплитуда тока:

$$\widehat{J}_0 = i\omega C U_0 \exp(i\varphi_u) \tag{6}$$

Получаем комплексный импеданс конденсатора

$$\widehat{z}_C = \frac{\widehat{U}_0}{\widehat{J}_0} = \frac{U_0 \exp(i\varphi_u)}{U_0 i\omega C \exp(i\varphi_u)} = \frac{1}{i \cdot \omega C}$$
(7)

1.1.2 Импеданс индуктивности

В данном случае удобно считать известным ток.

$$\widehat{U} = L \frac{\mathrm{d}\widehat{J}}{\mathrm{d}t} \tag{8}$$

Отсюда получаем:

$$\widehat{U} = i\omega L J_0 \exp(i\varphi_j) \exp(i\omega t) \tag{9}$$

И комплексная амплитуда напряжения:

$$\widehat{U}_0 = i\omega L J_0 \exp(i\varphi_j) \tag{10}$$

Получаем комплексный импеданс конденсатора

$$\widehat{z}_L = \frac{\widehat{U}_0}{\widehat{J}_0} = \frac{i\omega L J_0 \exp(i\varphi_j)}{J_0 \exp(i\varphi_j)} = i \cdot \omega L$$
(11)

1.1.3 Импеданс резистора

Пусть известен ток.

$$\widehat{U} = \widehat{J}R\tag{12}$$

Отсюда получаем:

$$\widehat{U} = RJ_0 \exp(i\varphi_j) \exp(i\omega t) \tag{13}$$

И комплексная амплитуда напряжения:

$$\widehat{U}_0 = RJ_0 \exp(i\varphi_j) \tag{14}$$

Получаем комплексный импеданс конденсатора

$$\widehat{z}_R = \frac{\widehat{U}_0}{\widehat{J}_0} = \frac{RJ_0 \exp(i\varphi_j)}{J_0 \exp(i\varphi_j)} = R$$
(15)

Двухполюсники. Расчет цепи и экспериментальные 2. данные

Схема №1. Последовательная *RC* – цепочка 2.1.

Рис. 1: Последовательная *RC* – цепочка

2.1.1Импеданс

Импеданс RC – цепочки найдем, используя ранее вычисленные импедансы линейных элементов:

$$\widehat{z} = \frac{1}{i \cdot \omega C} + R \tag{16}$$

$$z = \sqrt{\frac{1}{\omega^2 C^2} + R^2} = \sqrt{\frac{1}{\omega^2 C^2} + \frac{R^2 \omega^2 C^2}{\omega^2 C^2}} = \frac{\sqrt{1 + (\omega R C)^2}}{\omega C}$$
(17)

Экспериментально можно снимать зависомость $U_{13} \equiv U_{\rm bx}$ и $U_{23} \equiv U_{\rm bbix}$ от частоты. Из закона Ома найдем тогда импеданс цепочки.

$$\widehat{J}_{13} = \widehat{J}_{23} \quad \Rightarrow \quad \frac{\widehat{U}_{13}}{\widehat{z}} = \frac{\widehat{U}_{23}}{R} \tag{18}$$

Взяв по модулю, получим нужное соотношение:

$$z = \frac{U_{\text{BX}}}{U_{\text{BMX}}}R\tag{19}$$

Разность фаз 2.1.2

Также найдем зависимость разности фаз от частоты:

$$|\tan\varphi| = \left|\frac{\operatorname{Im}\widehat{z}}{\operatorname{Re}\widehat{z}}\right| = \left|\frac{-(\omega C)^{-1}}{R}\right| = \frac{1}{\omega RC}$$
(20)

2.1.3 Результаты эксперимента

ν, Γц	ω, Γ ц	a	b	φ , рад	$\tan\varphi$	U_{in}, \mathbf{B}	U_{in}, \mathbf{B}	z, Om
15	94	6.9	7.0	1.43	7.018	7.446	0.453	213683
25	157	6.9	7.0	1.40	5.853	7.532	1.064	92026
40	251	6.9	7.0	1.38	5.199	7.512	1.600	61035
100	628	5.9	7.0	1.00	1.566	7.412	3.364	28643
200	1256	4.7	7.0	0.74	0.906	7.410	5.016	19205
300	1884	3.7	7.0	0.56	0.623	7.320	5.909	16104
400	2512	3.0	7.0	0.44	0.474	7.270	6.297	15009
500	3140	2.5	7.0	0.37	0.382	7.236	6.536	14392
1000	6280	1.3	7.0	0.19	0.189	7.300	7.030	13499
2000	12560	0.7	7.0	0.10	0.101	7.282	7.160	13221
3000	18840	0.4	7.0	0.06	0.057	7.270	7.175	13172

Таблица 1: Результаты эксперимента для первой схемы

2.2. Схема №2. Последовательная *LC* – цепочка

Рис. 2: Последовательная LC – цепочка

2.2.1 Импеданс

$$\widehat{z} = i\omega L + R \tag{21}$$

$$z = \sqrt{(\omega L)^2 + R} \tag{22}$$

Очевидно, что аналогично последовательной RC–цепочке

$$z = \frac{U_{\text{BX}}}{U_{\text{BMX}}}R\tag{23}$$

2.2.2 Разность фаз

$$\left|\tan\varphi\right| = \left|\frac{\operatorname{Im}\widehat{z}}{\operatorname{Re}\widehat{z}}\right| = \left|\frac{\omega L}{R}\right| = \frac{\omega L}{R}$$
(24)

2.2.3 Результаты эксперимента

ν, Γц	ω, Γ ц	a	b	φ , рад	$\tan \varphi$	U_{in}, \mathbf{B}	U_{in}, \mathbf{B}	z, Om
15	94	0.0	7.0	0.00	0.000	6.985	6.632	13692
100	628	0.0	7.0	0.00	0.000	6.964	6.614	13688
300	1884	0.4	7.0	0.06	0.057	7.021	6.666	13692
500	3140	0.5	7.0	0.07	0.072	6.980	6.619	13709
700	4396	0.8	7.0	0.11	0.108	6.951	6.584	13725
1000	6280	0.9	7.0	0.13	0.130	6.990	6.549	13875
1500	9420	1.3	7.0	0.19	0.189	7.075	6.654	13823
2000	12560	1.9	7.0	0.27	0.282	7.077	6.616	13906
3000	18840	2.7	7.0	0.40	0.418	7.033	6.482	14105
5000	31400	4.0	7.0	0.61	0.696	7.079	6.111	15059
10000	62800	6.2	7.0	1.09	1.908	7.164	4.577	20348
15000	94200	6.8	7.0	1.33	4.093	6.892	3.038	29496
13 600	85408	6.9	7.0	1.40	5.853	7.317	3.372	28 212

Таблица 2: Результаты эксперимента для второй схемы

2.3. Схема №3. Двухполюсник *R*[*RC*]

Рис. 3: Двухполюсник *R*[*RC*]

2.3.1 Импеданс

Сначала рассчитаем импеданс параллельно соединенных конденсатора и резистора ${\cal R}$

$$\frac{1}{\widehat{z}_0} = \frac{1}{R} + i\omega C \tag{25}$$

$$\widehat{z}_0 = \frac{R}{1 + i\omega CR} \tag{26}$$

Комплексный импеданс всей схемы будет равен:

$$\hat{z} = \hat{z}_0 + R = \frac{R}{1 + i\omega RC} + R = \frac{R(1 - i\omega RC)}{1 + (\omega RC)^2} + R$$
(27)

$$z = \sqrt{\operatorname{Im}^2 \widehat{z} + \operatorname{Re}^2 \widehat{z}} = R \sqrt{\left(1 + \frac{1}{1 + (\omega RC)^2}\right)^2 + \left(\frac{\omega C}{1 + (\omega RC)^2}\right)^2}$$
(28)

2.3.2 Разность фаз

$$\tan \varphi = \frac{\operatorname{Im} \hat{z}}{\operatorname{Re} \hat{z}} = \frac{-\frac{\omega R^2 C}{1 + (\omega R C)^2}}{\frac{R + R + R(\omega R C)^2}{1 + (\omega R C)^2}} = \frac{-\omega R^2 C}{R + R + R(\omega R C)^2} = -\frac{\omega R C}{2 + (\omega R C)^2}$$
(29)

Из уравнения видно, что на малых частотах $z \approx 2R$, а при высоких $z \approx R$.

2.3.3 Результаты эксперимента

Таблица 3: Результаты эксперимента для третей схем	Ы

ν, Гц	ω, Γ ц	a	b	φ , рад	$\tan \varphi$	U_{in},B	$U_{in},{ m B}$	z, Om
10	63	0.4	7.0	0.06	0.057	7.060	3.538	25941
15	94	0.5	7.0	0.07	0.072	7.111	3.587	25772
20	126	0.6	7.0	0.09	0.086	7.126	3.615	25624
25	157	0.7	7.0	0.10	0.101	7.131	3.639	25477
30	188	0.8	7.0	0.11	0.108	7.127	3.657	25335
40	251	0.9	7.0	0.13	0.130	7.120	3.698	25031
100	628	1.5	7.0	0.22	0.219	7.066	3.988	23033
200	1256	2.0	7.0	0.29	0.298	7.129	4.600	20147
300	1884	2.1	7.0	0.30	0.314	7.086	5.107	18038
400	2512	2.1	7.0	0.30	0.314	7.045	5.507	16631
350	2198	2.1	7.0	0.30	0.314	7.058	5.318	17254
450	2826	1.9	7.0	0.27	0.282	7.026	5.559	16431
500	3140	1.9	7.0	0.27	0.282	7.012	5.789	15747
550	3454	1.7	7.0	0.25	0.250	6.991	5.916	15362
600	3768	1.7	7.0	0.25	0.250	6.980	6.005	15111
800	5024	1.4	7.0	0.20	0.204	6.942	6.272	14389
1000	6280	1.2	7.0	0.17	0.174	6.922	6.432	13990
1500	9420	0.9	7.0	0.13	0.130	7.059	6.761	13573
3000	18840	0.5	7.0	0.07	0.072	7.031	6.895	13256
6000	37680	0.3	7.0	0.04	0.043	6.996	6.905	13171
12000	75360	0.1	7.0	0.01	0.014	7.060	6.978	13153

2.4. Схема №4. Двухполюсник *R*[*RL*]

Рис. 4: Двухполюсник R[RL]

2.4.1 Импеданс

Рассчитаем импеданс параллельно соединенных катушки и резистора R

$$\frac{1}{\widehat{z_0}} = \frac{1}{R} + \frac{1}{i\omega L} = \frac{R + i\omega L}{iR\omega L} = \frac{\omega L - iR}{\omega RL}$$
(30)

$$\widehat{z}_0 = \frac{\omega R L(\omega L + iR)}{(\omega L - iR)(\omega L + iR)} = \frac{\omega^2 L^2 R + i\omega L R^2}{\omega^2 L^2 + R^2}$$
(31)

А импеданс всей схемы:

$$\widehat{z} = \left(\frac{2\omega^2 L^2 R + R^3}{\omega^2 L^2 + R^2}\right) + i\left(\frac{\omega L R^2}{\omega^2 L^2 + R^2}\right)$$
(32)

$$z = \sqrt{\mathrm{Im}^2 \,\hat{z} + \mathrm{Re}^2 \,\hat{z}} = \frac{1}{\omega^2 L^2 + R^2} \sqrt{(2\omega^2 L^2 R + R^3)^2 + (\omega L R^2)^2}$$
(33)

При больших частотах можно пренебречь вторым слагаемым под корнем и сопротивлением в суммах, тогда видно, что на таких частотах $z \approx 2R$.

На малых частотах $\omega \approx 0$ предел даёт значение импеданса R.

2.4.2 Разность фаз

$$\tan\varphi = \frac{\operatorname{Im}\widehat{z}}{\operatorname{Re}\widehat{z}} = \frac{\omega LR^2}{2\omega^2 L^2 R + R^3} = \frac{\omega LR}{2\omega^2 L^2 + R^2}$$
(34)

2.4.3 Результаты эксперимента

ν, Γц	ω, Γ ц	a	b	φ , рад	$\tan\varphi$	U_{in}, \mathbf{B}	U_{out}, B	z, Om
15	94	0.1	7.0	0.01	0.014	6.603	6.284	13660
30	188	0.1	7.0	0.01	0.014	6.626	6.304	13664
200	1256	0.2	7.0	0.03	0.029	6.657	6.332	13667
300	1884	0.3	7.0	0.04	0.043	6.642	6.311	13682
400	2512	0.4	7.0	0.06	0.057	6.624	6.279	13714
800	5024	0.7	7.0	0.10	0.101	6.575	6.175	13842
1000	6280	0.9	7.0	0.13	0.130	6.564	6.123	13936
2000	12560	1.4	7.0	0.20	0.204	6.707	5.960	14629
5000	31400	2.2	7.0	0.32	0.331	6.718	4.917	17762
8000	50240	2.4	7.0	0.34	0.356	6.729	4.272	20478
10000	62800	2.2	7.0	0.32	0.331	6.736	4.086	21429
20 000	125600	2.0	7.0	0.29	0.298	6.816	3.598	24630

Таблица 4: Результаты эксперимента для четвёртой схемы

3. Четырехполюсники. Расчет цепи и экспериментальные данные

3.1. Схема №5. Простейший мостовой фазовращатель

Рис. 5: Принципиальная схема фазовращателя

Запишем ток через левую ветвь:

$$\widehat{J}_{left} \equiv \widehat{J}_{R_1} = \frac{\widehat{U}_{in}}{R_1 + \frac{1}{i\omega C_1}}$$
(35)

Аналогично через правую:

$$\widehat{J}_{right} \equiv \widehat{J}_{R_2} = \frac{\widehat{U}_{in}}{R_2 + \frac{1}{i\omega C_2}}$$
(36)

Тогда

$$\widehat{U}_{out} \equiv \widehat{U}_{MN} = -\widehat{U}_{AM} + \widehat{U}_{AN} = -\widehat{J}_{left} \cdot \frac{1}{i\omega C_1} + \widehat{J}_{right} \cdot R_2$$
(37)

$$\widehat{U}_{out} = \widehat{U}_{in} \left(\frac{R_2}{R_2 + (i\omega C_2)^{-1}} - \frac{1}{i\omega C_1} \frac{1}{R_1 + (i\omega C_1)^{-1}} \right)$$
(38)

3.1.1 Коэффициент передачи

$$\widehat{K} = \frac{\widehat{U}_{out}}{\widehat{U}_{in}} = \frac{i\omega C_2 R_2}{i\omega C_2 R_2 + 1} - \frac{1}{i\omega C_1 R_1 + 1}$$
(39)

Обозначим $\Omega_1 = \omega C_1 R_1, \, \Omega_2 = \omega C_2 R_2$:

$$\widehat{K} = \frac{i\Omega_2}{i\Omega_2 + 1} - \frac{1}{i\Omega_1 + 1} = \frac{i\Omega_2(1 - i\Omega_2)}{\Omega_2^2 + 1} + \frac{i\Omega_1 - 1}{\Omega_1^2 + 1}$$
(40)

$$\widehat{K} = \left(\frac{\Omega_2^2}{\Omega_2^2 + 1} - \frac{1}{\Omega_1^2 + 1}\right) + i\left(\frac{\Omega_2}{\Omega_2^2 + 1} + \frac{\Omega_1}{\Omega_1^2 + 1}\right)$$
(41)

Отсюда

$$K = \sqrt{\left(\frac{\Omega_2^2}{\Omega_2^2 + 1} - \frac{1}{\Omega_1^2 + 1}\right)^2 + \left(\frac{\Omega_2}{\Omega_2^2 + 1} + \frac{\Omega_1}{\Omega_1^2 + 1}\right)^2}$$
(42)

При $\Omega_1 = \Omega_2$ подстановка дает $K \equiv 1$.

3.1.2 Разность фаз

$$\tan \varphi = \left(\frac{\Omega_2}{\Omega_2^2 + 1} + \frac{\Omega_1}{\Omega_1^2 + 1}\right) \cdot \left(\frac{\Omega_2^2}{\Omega_2^2 + 1} - \frac{1}{\Omega_1^2 + 1}\right)^{-1}$$
(43)

При $\Omega_1 = \Omega_2 \equiv \Omega$

$$\tan\varphi = \frac{2\Omega}{1 - \Omega^2} \tag{44}$$

Можно заметить, что это формула тангенса половинного угла:

$$\tan\varphi = \frac{2\tan\frac{\varphi}{2}}{1-\tan^2\frac{\varphi}{2}} \tag{45}$$

Отсюда

$$\tan\frac{\varphi}{2} = \Omega = \omega RC \tag{46}$$

Так как $\arctan\Omega$ может принимать значения только от 0 до $\frac{\pi}{2},$ то

$$0 \le \varphi < \pi \tag{47}$$

3.1.3 Результаты эксперимента

Таблица 5:	Результаты	эксперимента для	пятой	схемы:	$\varphi(R)$
------------	------------	------------------	-------	--------	--------------

<i>R</i> , кОм	a	b	φ , рад	$\tan \varphi$	$\tan \frac{\varphi}{2}$
0	0.0	4.0	0.00	0.000	0.000
20	1.8	7.0	0.26	0.266	0.131
40	3.3	7.0	0.49	0.535	0.251
60	4.8	7.0	0.76	0.942	0.397
80	5.4	7.0	0.88	1.212	0.471
100	6.2	7.0	1.09	1.908	0.605
120	6.6	7.0	1.23	2.830	0.707
140	6.8	7.0	1.33	4.093	0.785

Рис. 6: Зависимость $\tan \frac{\varphi}{2}(R)$

ν, Γ ц	ω, Γ ц	a	b	φ , рад	$ an \frac{\varphi}{2}$
10	63	0.9	4.0	0.23	0.114
15	94	1.6	4.0	0.41	0.209
40	251	3.3	4.0	0.97	0.527
60	377	3.8	4.0	1.25	0.724
65	408	4.0	4.0	1.57	1.000
100	628	3.6	4.0	2.02	1.595
200	1256	2.7	4.0	2.40	2.574
400	2512	1.4	4.0	2.78	5.532

Таблица 6: Результаты эксперимента для пятой схемы: $\varphi(\omega)$

Рис. 7: Зависимость $\tan \frac{\varphi}{2}(\omega)$

3.2. Схема №6. Четырехполюсник CR-CR-CR

Рис. 8: Принципиальная схема четырехполюсника

3.2.1 Расчет комплексного коэффициента передачи

Рассчитаем цепь четырехполюсника с помощью метода контурных токов. Уравнения будут выглядеть следующим образом:

$$\begin{cases} J_{1} \cdot \left(\frac{1}{i\omega C} + R\right) + J_{2} \cdot (-R) + J_{3} \cdot (0) = U_{in} \\ J_{1} \cdot (-R) + J_{2} \cdot \left(\frac{1}{i\omega C} + 2R\right) + J_{3} \cdot (-R) = 0 \\ J_{1} \cdot (0) + J_{2} \cdot (-R) + J_{3} \cdot \left(\frac{1}{i\omega C} + 2R\right) = 0 \end{cases}$$
(48)

В этом расчете все величины – комплексные, хотя это явно не указано. Методом Крамера найдем J_3 :

$$\Delta = \begin{vmatrix} \alpha & -R & 0 \\ -R & \alpha + R & -R \\ 0 & -R & \alpha + R \end{vmatrix} = \alpha [(\alpha + R)^2 - R^2] + R[-R(\alpha + R)]$$
(49)

$$\Delta_{3} = \begin{vmatrix} \alpha & -R & U_{in} \\ -R & \alpha + R & 0 \\ 0 & -R & 0 \end{vmatrix} = R^{2} U_{in}$$
(50)

Здесь
$$\alpha = \frac{1}{i\omega C} + R$$
. Тогда

$$-\Delta = R^3 + R^2 \alpha - \alpha^3 - 2\alpha^2 R = R^3 + R^2 \frac{1}{i\omega C} + R^3 - \frac{i}{\omega^3 C^3} + 3R \frac{1}{\omega^2 C^2} - 3R^2 \frac{i}{i\omega C} - R^3 + 2R \frac{1}{\omega^2 C^2} - 4R^2 \frac{1}{i\omega C} - 2R^3 = SR \frac{1}{\omega^2 C^2} - 6R^2 \frac{1}{i\omega C} - R^3 - \frac{i}{\omega^3 C^3}$$
(51)

$$\Delta = \left(R^3 - \frac{5R}{\omega^2 C^2}\right) + i\left(\frac{1}{\omega^3 C^3} - \frac{6R^2}{\omega C}\right) \tag{52}$$

Или поделив на R^3 и обозначив $\Omega=\omega RC$

$$\frac{\Delta}{R^3} = \left(1 - \frac{5}{\Omega^2}\right) + i\left(\frac{1}{\Omega^3} - \frac{6}{\Omega}\right) = a + ib \tag{53}$$

$$K = \frac{U_{out}}{U_{in}} = R \frac{J_3}{U_{in}} = \frac{R}{U_{in}} \frac{\Delta_3}{\Delta} = \frac{R^3}{\Delta} = \frac{1}{a+ib} = \frac{a-ib}{a^2+b^2}$$
(54)

Отсюда, очевидно, модуль амплитудной характеристики

$$|K| = \frac{1}{|a+ib|} = \frac{1}{\sqrt{a^2 + b^2}} = \frac{1}{\sqrt{\left(1 - \frac{5}{\Omega^2}\right)^2 + \left(\frac{1}{\Omega^3} - \frac{6}{\Omega}\right)^2}}$$
(55)

Упростим, домножив на Ω^3 числитель и знаменатель:

$$|K| = \frac{\Omega^3}{\sqrt{\Omega^2 (5 - \Omega^2)^2 + (1 - 6\Omega^2)^2}}$$
(56)

Из (54), очевидно,

$$\tan \varphi = -\frac{b}{a} = -\frac{1 - 6\Omega^2}{\Omega(5 - \Omega^2)} \quad \Rightarrow \quad \operatorname{ctg} \varphi = -\frac{\Omega(5 - \Omega^2)}{1 - 6\Omega^2} \tag{57}$$

$$\varphi = \operatorname{arcctg}(-\frac{\Omega(5-\Omega^2)}{1-6\Omega^2}) = \pi - \operatorname{arcctg}\frac{\Omega(5-\Omega^2)}{1-6\Omega^2}$$
(58)

Воспользуемся тригонометрической формулой

$$\operatorname{arcctg} x = \frac{\pi}{2} - \arctan x$$
 (59)

Откуда следует результат:

$$\varphi = \frac{\pi}{2} + \arctan \frac{\Omega(5 - \Omega^2)}{1 - 6\Omega^2} \tag{60}$$

3.2.2 Результаты эксперимента

Рис. 9: Зависимость $\varphi(\omega)$

Таблица 7: Результаты эксперимента для пятой схемы: $\varphi(\omega)$

$ u, \Gamma$ ц	ω, Γ ц	a	b	φ , рад	$\tan \frac{\varphi}{2}$
10	63	0.9	4.0	0.23	0.114
15	94	1.6	4.0	0.41	0.209
40	251	3.3	4.0	0.97	0.527
60	377	3.8	4.0	1.25	0.724
65	408	4.0	4.0	1.57	1.000
100	628	3.6	4.0	2.02	1.595
200	1256	2.7	4.0	2.40	2.574
400	2512	1.4	4.0	2.78	5.532

3.2.3 Расчет импеданса входа

$$z = \frac{1}{i\omega C} + \frac{1}{\frac{1}{R} + \frac{1}{\frac{1}{i\omega C} + \frac{1}{\frac{1}{\frac{1}{R} + \frac{1}{\frac{1}{R} + \frac{1}{\frac{1}{\frac{1}{R} + \frac{1}{\frac{1}{R} + \frac{1}{R} + \frac{1}{\frac{1}{R} + \frac{1}{R} + \frac{1}{\frac{1}{R} + \frac{1}{R} + \frac{1}$$

$$= \frac{1}{i\omega C} + \frac{1}{\frac{1}{R} + \frac{1}{\frac{1}{i\omega C} + \frac{R(i\Omega + 1)}{2i\Omega + 1}}} = (62)$$

$$= \frac{1}{i\omega C} + \frac{1}{\frac{1}{R} + \frac{i\omega C - 2\Omega\omega C}{3i\Omega - \Omega^2}} =$$
(63)

$$=\frac{1}{i\omega C} + \frac{1}{\frac{3i\Omega - \Omega^2}{\dots} + \frac{i\Omega - 2\Omega^2}{R(3i\Omega - \Omega^2)}} =$$
(64)

$$=\frac{1}{i\omega C} + \frac{R(3i\Omega - \Omega^2)}{4i\Omega - 3\Omega^2} =$$
(65)

$$=\frac{4i\Omega-3\Omega^2}{\dots}+\frac{i\Omega(3i\Omega-\Omega^2)}{-4\Omega\omega C-3i\Omega^2\omega C}=$$
(66)

$$=\frac{4i\Omega-3\Omega^2}{\dots}+\frac{-3\Omega^2-i\Omega^3}{-4\Omega\omega C-3i\Omega^2\omega C}=$$
(67)

$$=R\frac{i\Omega^3 + 6\Omega^2 - 4i\Omega}{4\Omega^2 + 3i\Omega^3} =$$
(68)

$$=R\frac{(i\Omega^3 + 6\Omega^2 - 4i\Omega)(4\Omega^2 - 3i\Omega^3)}{16\Omega^4 + 9\Omega^6} = R\frac{-16i\Omega^3 + 12\Omega^4 - 14i\Omega^5 + 3\Omega^6}{16\Omega^4 + 9\Omega^6} =$$
(69)

$$= \left(R \frac{12\Omega^4 + 3\Omega^6}{16\Omega^4 + 9\Omega^6} \right) - i \left(R \frac{16\Omega^3 + 14\Omega^5}{16\Omega^4 + 9\Omega^6} \right)$$
(70)

Расчет «экзотических» четырехполюсников **4**.

Четырехполюсник-фильтр 4.1.

Рис. 10: Принципиальная схема четырехполюсника

Сначала рассчитаем импеданс параллельно соединенных RL и RC контуров.

$$\frac{1}{\widehat{z_0}} = \frac{1}{\widehat{z_1}} + \frac{1}{\widehat{z_2}} = \frac{1}{R + i\omega L} + \frac{i\omega C}{iR\omega C + 1}$$
(71)

$$\frac{1}{\widehat{z_0}} = \frac{1 - \omega^2 CL + i2R\omega C}{R(1 - \omega^2 LC) + i\omega(R^2 C + L)}$$
(72)

Учитывая то, что $L=\varkappa R$
и $C=\frac{\varkappa}{R}$ получим

$$\widehat{z}_0 = \frac{R - \omega^2 \varkappa L + i\omega R \varkappa + i\omega \varkappa R}{1 - \omega^2 \varkappa R C + i2\omega \varkappa}$$
(73)

Отсюда следует, что

$$\widehat{z_0} = R \tag{74}$$

Получается, что данная цепь ни что иное как потенциометр.

$$K_U = \frac{R}{R+R} = \frac{1}{2} \tag{75}$$

4.2. Двойной Т-мост – узкополосный заграждающий фильтр

Рис. 11: Принципиальная схема четырехполюсника

4.2.1 Эквивалентная схема

Перейдём к эквивалентной схеме:

$$U_{out} = U_{2R} + U_{2C} \tag{76}$$

$$U_{2R} = (J_3 - J_2) \cdot 2R \tag{77}$$

$$U_{2C} = J_3 \cdot \frac{1}{2i\omega C} \tag{78}$$

Все величины подразумеваются комплексными.

Методом контурных токов составим систему уравнений:

$$\begin{cases} J_1 \cdot \left(\frac{1}{i\omega C} + R\right) + J_2 \cdot \left(-\frac{1}{i\omega C}\right) + J_3 \cdot (R) = U_{in} \\ J_1 \cdot \left(-\frac{1}{i\omega C}\right) + J_2 \cdot \left(4R + \frac{2}{i\omega C}\right) + J_3 \cdot \left(-2R - \frac{1}{i\omega C}\right) = 0 \\ J_1 \cdot (-R) + J_2 \cdot \left(-2R - \frac{1}{i\omega C}\right) + J_3 \cdot \left(\frac{3}{2i\omega C} + 3R\right) = 0 \end{cases}$$
(79)

Решим её методом Крамера:

$$\Delta = \begin{vmatrix} R + \frac{1}{i\omega C} & -\frac{1}{i\omega C} & -R \\ -\frac{1}{i\omega C} & 4R + \frac{2}{i\omega C} & -2R - \frac{1}{i\omega C} \\ -R & -\frac{1}{i\omega C} - 2R & 3R + \frac{3}{2i\omega C} \end{vmatrix} = \frac{(2i\omega CR + 1)[4(i\omega CR)^2 + 8(i\omega CR) + 1]}{2(i\omega C)^3}$$
(80)

$$\Delta_{J_1} = \begin{vmatrix} U_{in} & -\frac{1}{i\omega C} & -R \\ 0 & 4R + \frac{2}{i\omega C} & -2R - \frac{1}{i\omega C} \\ 0 & -\frac{1}{i\omega C} - 2R & 3R + \frac{3}{2i\omega C} \end{vmatrix} = \frac{2U_{in}(2i\omega CR + 1)^2}{(i\omega C)^2}$$
(81)

$$\Delta_{J_2} = \begin{vmatrix} R + \frac{1}{i\omega C} & U_{in} & -R \\ -\frac{1}{i\omega C} & 0 & -2R - \frac{1}{i\omega C} \\ -R & 0 & 3R + \frac{3}{2i\omega C} \end{vmatrix} = \frac{U_{in}(2i\omega CR + 1)(2i\omega CR + 3)}{(i\omega C)^2}$$
(82)

$$\Delta_{J_3} = \begin{vmatrix} R + \frac{1}{i\omega C} & -\frac{1}{i\omega C} & U_{in} \\ -\frac{1}{i\omega C} & 4R + \frac{2}{i\omega C} & 0 \\ -R & -\frac{1}{i\omega C} - 2R & 0 \end{vmatrix} = \frac{U_{in}(2i\omega CR + 1)^2}{(i\omega C)^2}$$
(83)

Переобозначим $\Omega = \omega CR$. Теперь нетрудно найти J_1, J_2 и J_3 :

$$J_3 = 2i\frac{U_{in}}{R}\frac{2i\Omega^2 + \Omega}{4(i\Omega)^2 + 8\Omega + 1} = \frac{U_{in}}{R}\frac{4\Omega^2 - 2i\Omega}{4\Omega^2 - 1 - 8i\Omega}$$
(84)

$$J_{2} = i \frac{U_{in}}{R} \frac{2i\Omega^{2} + 3\Omega}{4(i\Omega)^{2} + 8i\Omega + 1} = \frac{U_{in}}{R} \frac{2\Omega^{2} - 3i\Omega}{4\Omega^{2} - 1 - 8i\Omega}$$
(85)

$$J_3 - J_2 = \frac{U_{in}}{R} \cdot \frac{2\Omega^2 + i\Omega}{4\Omega^2 - 1 - 8i\Omega}$$
(86)

$$U_{out} = (J_3 - J_2)2R + J_3 \frac{R}{2i\Omega} = 2U_{in} \cdot \frac{2\Omega^2 + i\Omega}{4\Omega^2 - 1 - 8i\Omega} + \frac{R}{2i\Omega} \cdot \frac{U_{in}}{R} \frac{4\Omega^2 - i\Omega}{4\Omega^2 - 1 - 8i\Omega}$$
(87)

Выходное напряжение выразится как

$$U_{out} = \frac{U_{in}}{1 + i\frac{8\Omega}{1 - 4\Omega^2}} \tag{88}$$

и коэффициент передачи

$$K = \frac{1}{1 + i\frac{8\Omega}{1 - 4\Omega^2}}\tag{89}$$

4.2.2 Амплитудная характеристика

$$|K| = \frac{1}{\sqrt{1 + \frac{(8\Omega)^2}{(1 - 4\Omega^2)^2}}} = \frac{|1 - 4\Omega^2|}{\sqrt{(1 - 4\Omega^2)^2 + 64\Omega^2}}$$
(90)

4.2.3 Фазовая характеристика

$$\operatorname{tg}\varphi = \frac{8\Omega}{1 - 4\Omega^2} \tag{91}$$

Рис. 12: Амплитудная характеристика фильтра (а) и фазовая (б)

5. Заключение

В данной работе мы изучили некоторые линейные двухполюсники и четырёхполюсники.

Были вычислены и измерены импеданс и разность фаз для *RC*, *LC*, *R*[*RC*], *R*[*RL*] двухполюсников.

Также были исследованы простейший мостовой фазовращатель и фильтр высоких частот.

Для каждой из них был вычислен коэффициент передачи напряжения и разность фаз (амплитудная и фазовая характеристики).

Сравнение теоретических и практических графиков зависимости $z(\omega)$, $\varphi(\omega)$ и $K(\omega)$ показало, что всё совсем плохо что с учётом погрешности, теория совпадает с практикой.